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Abstract: Deep Learning techniques n widely applied in the field of network traffic classification. However, there still exist various

challenges, including dependency: e scale data and overfitting. To address these issues, a semi-supervised deep learning method combi-
ning mean teacher and manifold mixups proposed. This method employs a teacher-student architecture, utilizing Exponential Moving Average
(EMA) to assist the model learning process and to enhance the generalization capability of model. Additionally, manifold mixup in the feature
space effectively refines the model’s decision boundary, strengthening robustness. Experimental results demonstrate that with only 1 000 sam-
ples per class, the method achieves over 90% accuracy across three network traffic datasets while maintaining outstanding performance under

few-shot condition.
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