
The Benefits of System Simulation for Debugging
Multicore Software

Dr Mikael Bergqvist
Virtutech, Stockholm

1

Topic

• Debugging parallel software
– For multiprocessors and multicore hardware

• Using virtual hardware
– As a complement to physical hardware

• Outline
– Introduction to virtual hardware for software development
– Multicore computing and parallel software problems
– Debugging parallel software using virtual hardware
– War stories
– Validity discussion

2

What Virtutech Does

• Provider of Simics: a high-performance, high fidelity, full system
simulator

– High Performance – fast enough to run real software loads
(typically 100’s of MIPS, up to multiple GIPS)

– High Fidelity – run full production software, including firmware,
device drivers, hypervisor, RTOS/OS, application software

– Full System – simulate entire systems, not just processor cores,
or SoCs, or boards

• Complete machines, backplanes, networks of networks

• The true value of Simics is through enablement of process
change: Virtualized Software Development
– Especially interesting for multicore and concurrent machines

Virtualization for Software Developers

4

Virtual HW

• A piece of software
• Running on a regular

PC, server, or
workstation

• Functionally identical to
a particular hardware

• Runs the same
software as the
physical hardware
system

What is Virtual Hardware?

5

SimicsSimics

User application code

• Model any electronic system on
a PC or workstation

– Simics is a software program,
no hardware required

• Run the exact same software
as the physical target (complete
binary)

• Run it fast (100s of MIPS)
• Model any target system

– Networks, SoCs, boards,
ASICs, ... no limits

• For the benefit of software
developers and hardware
providers

• Enables process change in
software development

Host hardwareHost hardware

Host operating systemHost operating system

Virtual target hardware

Target operating system (s)

Middleware and libraries

Virtutech Core Technology

6

Operating system

User program

MiddlewareDBJava VM

Drivers Boot firmwareHardware
abstraction layerHW/SW

interface

Complete
production
software

Simulated
(virtual)
hardware

The software can’t
tell the difference

Runs binaries from
real target

Run your
system
software
on your
desktop

Identical
build tools
chain and
settings
as target

Virtual Hardware

CPU

RAM

FLASH

User Intf
device

A/DROM

PCI

I2C

Bus
CPU

NetworkDisk

Disk Ctrl

Ta
rg

et
 S

of
tw

ar
e

Runs the Same Software

7

Complete Systems & Networks

• Satellite, telecom
network, backbone net

Racks of Boards
& Backplanes

• Telecom rack, avionics
bay, blade server

What Types of Systems Can be Virtualized?

Complete Boards

• MPC8548CDS,
MPC8572DSDevices &

Buses

• PCI, PCI-X, RapidIO,
Custom ASICS

SoC Devices

• Freescale QorIQ P4080,
MPC8572E, MPC8548E

Processor
& Memory

• Freescale PPC cores
such as e300, e500-mc,
e600

Examples

8

Why do we use Virtual Hardware?

• Business Reasons
• Develop software before

hardware becomes available
– Shorten time-to-market

• Decouple hardware and
software development

• Reduce software risk
• Increase quality
• Availability & Flexibility

– Engineering workstation can be
“any” system

– Easy to change the system
– Easy to distribute and supply to

engineers
– Infinite supply of test hardware

• Engineering Reasons
• Deterministic
• Virtual time

– Precisely synchronized
– Stopped at any point

• Checkpoint & restore
• Reverse execution
• Configurable
• Control

– Any variable or property can be
changed

– Controlled experiments, no
real-world randomness

• Inspection power
– Any state or variable

• No debug bandwidth limit

Multicore Computing and Parallel Software

10

Electronics Is Software

Electronics is software. Shipping a system is
largely about identifying and removing
defects from the software and keeping them
from creeping back in as the product evolves.

11

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

One shared memory space

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

etc.Network

Timer Serial

Network with local memory in each node

Future Embedded Systems Template

12

• Parallelism required to gain performance
– Parallel hardware is “easy” to design
– Parallel software is (very) hard to write

• Fundamentally hard to grasp true concurrency
– Especially in complex software environments

• Existing software assumes single-processor
– Might break in new and interesting ways
– Multitasking no guarantee to run on multiprocessor

• These are difficult issues for software developers
– Requires additional tool support
– Physical hardware is often not the best development platform

Software Development for Multicore

13

(Embedded) Software Reality Today

• Programmers used to single-threaded programs
• Legacy code in C, C++, Java, Ada, assembler, Plex

– Essentially sequential languages
– Very little in concurrent languages like Erlang

• Fine-grained parallelism added to sequential code
– OpenMP, pthreads, OS threads, MPI, special C variants, Java

threads, Ada concurrency, ...

• Debuggers designed for single processors
– Or multiple instances of single processors

• If we programmed using better languages, libraries, and tools,
many problems would go away.

14

Multiprocessors & Debug

• Limited visibility into hardware
– Single debug port, multiple processors
– High speed, concurrent execution

• Timing-sensitive chaotic behavior
– Small changes in timing alters system behavior radically
– Hardware variations impact software behavior

• Lack of determinism
– Rerunning a program gives different results
– Hard to reproduce bugs

• Heisenbugs
– Inserting probes to trace behavior alters behavior
– Bugs hide when they are being debugged

• System keeps running even if one core stopped

15

Code is not just about CPUs

On a modern SoC, the
processor cores are just
one part of the system

Much application functionality
is implemented by using

special accelerators... and you
need to debug their interaction
with the processors & software

Virtual Hardware to the Rescue!

17

Three Steps of Debugging

1. Provoking errors
– Forcing the system to a state where things break

2. Reproducing errors
– Recreating a provoked error reliably

3. Locating and fixing errors
– Investigating the program flow and data
– Depends on success in reproduction

Virtualized hardware helps with all three steps

18

Provoking Errors

• Virtualization provides complete control over
system configuration and execution

• Replicate failing tests from production units
• Vary system hardware configuration

– Like testing on a variety of real-world machines

• Vary system software configuration
– Easy to test different software loads on different machines

• Systematically provoke corner cases
– Use oddball processor counts
– Make a processor slower or stop it entirely
– Increase communication latencies
– Slow down individual processors to increase perceived load

19

Funny Recent Issue

Typical “untested
configuration because
the hardware did not

exist” error

20

Reproducing Errors

• Virtual hardware state can be checkpointed
• Virtual hardware execution is deterministic

– Simulation engine imposes a well-defined sequential semantic to
the parallel execution of the target machine

– All machine-internal events have deterministic time
– Input from real world recorded & replayed
– Successive

• An error is provoked in simulation can be reproduced
– Reset back to initial state (or restore a checkpoint)
– Rerun the test case that ended in error
– Same error state results
– ...any number of times
– ...on any machine running the simulator
– ...from a checkpoint distributed to multiple developers

21

Locating and Fixing Errors

• Determinism and control key features

• No probe effect from instrumentation
– Tracing and observation from the outside, not by code mod

• No timing disturbance from debugging
– Breakpoints behave like hardware breakpoints

• Global system stop
– For practical reasons, this has a small skid of 1-100kcycle

• Heisenbugs cannot occur
– No intrusion in timing behavior, no varying behavior

22

• Repeat any run trivially
– No need to rerun and hope

for bug to reoccur
• Stop & go back in time

– Instead of rerunning
program from start

– Breakpoints & watchpoints
backwards in time

– Investigate exactly what
happened this time

• This control and reliable
repeatability is very powerful
for parallel code!

On virtual hardware,
debugging is much

easier

Repeatability and Reverse Debugging

On hardware, only
some runs

reproduce an error

Some Bug Stories

24

Divide-by-zero in OS Kernel

• Operating-system kernel crash in virtual model
– Divide-by-zero right in the kernel
– Algorithm to determine and compensate for clock skew
– Division by difference in time between two processors

• Virtual model had zero clock skew = provoked error
– Could have happened on a real system
– Just not very likely
– Typical rare problem in the field
– Essentially testing a rare corner case in system state

25

Race Condition in Serial Driver

• The problem:
– Dual-core MPC8641D machine
– Changed clock frequency from 800 to 833 Mhz
– OS froze on startup – quite unexpectedly

• Investigation:
– Only happened at 832.9 to 833.3 MHz
– Determinism: 100% reproduction of error trivial
– Time control: single-step code feasible
– Insight: look at complete system state, log interrupts, check the call

stack at the point of the freeze, check lock state
• What we found:

– An interrupt service routine attempted to take a lock, before re-
enabling interrupts. In the case that froze, the lock was already
taken when the service routine was entered, and with no interrupts
enabled there was no way for it to be released.

26

The Disk Corruption Example Bug

• Distributed fault-tolerant file system got corrupted
– Rack-based system with many (single-processor) boards
– Intermittent error
– Error seen as a composite state across multiple disks: they got

inconsistent, for some reason
– Months spent chasing it on physical hardware

• Simics solution:
– Reproduce corruption in Simics model of target
– Pin-point time when it happens, by interval halving
– Around the critical time, take periodic snapshots of disks
– Check consistency of disk states in offline scripts

• Result:
– Found the precise instruction causing the problem
– Capture the network traffic pattern causing the issue
– Communicated the complete setup and reproduction instructions

to development, greatly facilitating fixing the bug

Validity of Virtual Debug

28

“But it is just a simulation”

• Sometimes people do not believe in debugging using
a simulator... it is just a simulation after all, not the
real thing

• All experience contradicts this
– Any bug found in a virtual environment is a real bug!
– Our customers are very happy with virtual debugging

• Experimental evidence back up usefulness
– Coming up in next few slides!

29

Simplified Timing and Multicore

• Simplified simulation is necessary to run workloads
– Simplify target timing to get performance [spare slide]
– Billions and billions of instructions to execute [spare slide]

• You still expose common concurrency bugs and coarse-
grain performance effects
– Race conditions
– Missing locks
– Lock contention
– Locking overhead

• The way to find bugs is not precise simulation of the
target but deliberate variation
– Do not rely on physical randomness
– Introduce controlled patterns, known variations
– Rely on repeatability of the simulator to find root errors

• Low-level code sometimes break because of timing-
related details such as cache coherency issues
– Use hybrid simulation to investigate failure scenarios with full

timing and pipeline and memory system details

30

1 3

10

10
0

20
0

50
0

80
0

95
0

97
7

10
00

10
13

10
00

0

1 CPU
2 CPUs

0%
10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Clock freqency (MHz)

Percentage of runs triggering race

Locking Test Program: Find Race

• Test on single core and
dualcore setups

– Range of frequencies
– Test program run 20

times on each setup
– Count percentage of

runs triggering race
• Results:

– Race always triggers in
dual-CPU mode

– Triggers around 10% in
single-CPU mode

– Higher clock = less
chance to trigger

• Simulator: simple timing,
quantum 1000

• Simplified timing does
not hide the race!

Simulator shows the
difference between

single-core and multi-
core setups in bug

aggressiveness

31

Locking Test Program: Contention

0

0,2

0,4

0,6

0,8

1

1,2

10 100 1000 10000

Time quantum

Ex
ec

ut
io

n
tim

e

no locking
fake locking
proper locking

• Observations:
– Locking overhead visible
– Lock contention visible
– Only proper locking varies in

execution time
• On real hardware:

– no << fake << proper
– Same relation seen in

simulation, even if magnitude
varies

• Test program details
– 2 threads
– 1000000 iterations
– MPC8641D virtual target
– All locking disciplines
– Time quantum 10-10000Lock contention

execution time
penalty clearly

visible in simulator

32

Summary

• Virtual hardware provides an
additional tool for embedded
software development

• Frees software from
hardware dependence

• Especially useful for the
tough show-stopper bugs
– Parallel software
– Hardware-software

interaction
– ”Heisenbugs”

Virtual Hardware

33

Our Customers are Convinced

“ Simics is really the only way to develop multi-core software”
-- Tomas Evensen, Chief Technical Officer, Wind River.

“IBM has historically been at the forefront of developing best
practices for hardware development, which is especially important
as the company continues to create new, complex technologies”
-- Erich Baier, vice president of hardware development, IBM.

“Simics allows us to test our software and validate
it while the underlying hardware design is being
developed"
-- Gerry Vossler, vice president, Advanced
Marketing & Technology, GE.

“The processing potential of multi-core devices remains
untapped because multicore systems are only as effective
as software’s ability to handle parallelism”
-- Chekib Akrout, former vice president and general
manager of Freescale’s Networking System Division.

Questions

	The Benefits of System Simulation for Debugging Multicore Software
	Topic
	What Virtutech Does
	Virtualization for Software Developers
	What is Virtual Hardware?
	Virtutech Core Technology
	Runs the Same Software
	What Types of Systems Can be Virtualized?
	Why do we use Virtual Hardware?
	Multicore Computing and Parallel Software
	Electronics Is Software
	Future Embedded Systems Template
	Software Development for Multicore
	(Embedded) Software Reality Today
	Multiprocessors & Debug
	Code is not just about CPUs
	Virtual Hardware to the Rescue!
	Three Steps of Debugging
	Provoking Errors
	Funny Recent Issue
	Reproducing Errors
	Locating and Fixing Errors
	Repeatability and Reverse Debugging
	Some Bug Stories
	Divide-by-zero in OS Kernel
	Race Condition in Serial Driver
	The Disk Corruption Example Bug
	Validity of Virtual Debug
	“But it is just a simulation”
	Simplified Timing and Multicore
	Locking Test Program: Find Race
	Locking Test Program: Contention
	Summary
	Our Customers are Convinced
	Questions
	SPARES
	Power Architecture Multiprocessing
	Simulation Speed
	Workload Sizes
	Temporal Decoupling Speed Impact
	Vocabulary in the Multi Era
	Vocabulary in the Multi Era
	Example: Pursuit of a Race Condition
	Modeling Hardware for Virtual Software Development
	Modeling Your System
	Mapping a System For Modeling
	DML

