virtutech

7

The Benefits of System Simulation for Debugging

Multicore Software

Dr Mikael Bergqgvist
Virtutech, Stockholm

8 virtutech

S

& Debugging parallel software
— For multiprocessors and multicore hardware

® Using virtual hardware
— As a complement to physical hardware

® Qutline
— Introduction to virtual hardware for software development
— Multicore computing and parallel software problems
— Debugging parallel software using virtual hardware
— War stories
— Validity discussion

8 virtutech
P What Virtutech Does

{ ® Provider of Simics: a high-performance, high fidelity, full system
simulator

— High Performance — fast enough to run real software loads
(typically 100’s of MIPS, up to multiple GIPS)

— High Fidelity — run full production software, including firmware,
device drivers, hypervisor, RTOS/OS, application software

— Full System — simulate entire systems, not just processor cores,
or SoCs, or boards
» Complete machines, backplanes, networks of networks

® The true value of Simics is through enablement of process

change: Virtualized Software Development
— Especially interesting for multicore and concurrent machines

_ v

virtutech

7

Virtualization for Software Developers

8 virtutech

P What is Virtual Hardware?

& A piece of software

® Running on a reqgular
PC, server, or
workstation

® Functionally identical to
a particular hardware

® Runs the same
software as the
physical hardware
system

D virtutech

S

-

Model any electronic system on
a PC or workstation
— Simics is a software program,
no hardware required
Run the exact same software
as the physical target (complete
binary)

Run it fast (100s of MIPS)

Model any target system
— Networks, SoCs, boards,
ASICs, ... no limits

For the benefit of software
developers and hardware
providers

Enables process change in
software development

Virtutech Core Technology

User application code

Middleware and libraries

Tariet oieratini sistem ISi

Virtual target hardware

Simics

Host operating system

Host hardware

virtutech

- Runs the Same Software
{ The software can't Runs binaries from
) . tell the difference real target
Run your
system User program O
software G
on your _ E
desktop S
’ \ n
Complete ' 87
production E
software —
_HW/ SW e
interface
Simulated
() (virtual)
|dentical hardware
build tools
chain and
settings
as target

ﬂ virtutech
LO What Types of Systems Can be Virtualized?

-

Examples

® Freescale PPC cores

Complete Systems & Networks
such as e300, e500-mc,

e600
macks of Boards ® Freescale QorlQ P4080,
& Backplanes MPC8572E, MPC8548E
® PCI, PCI-X, RapidlO,
Complete Boards Custom ASICS
Devices & ®* MPC8548CDS,
evices
Buses MPC8572DS
SoC Devices ® Telecom rack, avionics
bay, blade server
UGl ® Satellite, telecom
& Memory

network, backbone net

_ v

virtutech

Why do we use Virtual Hardware?

Business Reasons

Develop software before

hardware becomes available
— Shorten time-to-market

Decouple hardware and
software development

Reduce software risk
Increase quality

Avallablllty & Flexibility
Englneerlng workstation can be
“any” system
— [Easy to change the system
— Easy to distribute and supply to
engineers
— Infinite supply of test hardware

Engineering Reasons
Deterministic

Virtual time
— Precisely synchronized
— Stopped at any point

Checkpoint & restore
Reverse execution
Configurable

Control
— Any variable or property can be
changed
— Controlled experiments, no
real-world randomness

Inspection power
— Any state or variable

No debug bandwidth limit

virtutech

7

Multicore Computing and Parallel Software

virtutech
- Electronics Is Software

4 Electronics is software. Shipping a system is
largely about identifying and removing
defects from the software and keeping them
from creeping back in as the product evolves.

St. Jude Medical Cardiac Defibrillators

St Jude Medical Inc., a . .
Canada-hased medical The Explosion of the Ariane 5

technology company, announced

in-June 2005 that SDmE Df its On June 4, 1996 an unmanned Anane 5 rocket launched by the European Space Agency exploded just forty seconds after its bft-off from

Los Angeles Times ST SO

hmncm [implantable ded ermadals, K ourou, French Guiana. The rocket was on its first voyage, after a decade of development costing $7 billion. The destroyed rocket and its
8| 0rlCDs, have @sofware proble argoeffere walued at $500 million. & board of inquiry investigated the causes of the

that could causesg y
heart-shocking device fo)

2:43 PM PDT, Qctober 13, 2005 i
malfunction. . e 1o the honzontal veloc1ty ofthe rocket with respect to the platform was
S ftware Glitch Tri - 0T e '°M63 The & Reg’ster
R - ed.

Science

Lockheed's F-22 Raptor Gets Zapped
§ by International Date Line

Software glitch Dlamed for
SiyoSat [0

Rockot still ok to fly again
By Lucy Shemiff

- Brandon Hill (Blog] - February 26, 2007 10:25 AM Published Thurscay 27th October 2005 14:30 GMT
Get breaking Reg news straight to your desktop - click here to find out how
The voluntary recall dented th Myprint [EE-mail wfdelicious G Digy 1154 commertrs) - last by seaman.. on Mar 6 st 6:47 PM
Officials investigating the loss of the CryoSat mission have revealed

= E = that a software glitch in the on board flight control system on the new,
Zix Lockheed I\22 Raptors have r upper stage of the rocket was to blame.
Y2K esque glitch of their own over the -
ific ﬁ_ / There is no fault with the Rockot launcher itself, Russian officials said,
. e e e e e e e L AR . 7. W 'q, which means it has been cleared for future flights, the BEC repoy

as drivers sought better fuel e

\ ADYERTISEMENT

10

virtutech
P Future Embedded Systems Template

fakay
B2

=2

Timer Serial Timer Serial
etc. Network pre=ssssssnnnnn k[Network etc.
Devices Devices
Multicore node Multicore node

N J

Y

One shared memory space
g J
Y

Network with local memory in each node

11

8 virtutech

S Software Development for Multicore

{ ¢ Parallelism required to gain performance
— Parallel hardware is “easy” to design
— Parallel software is (very) hard to write

® Fundamentally hard to grasp true concurrency
— Especially in complex software environments

® Existing software assumes single-processor
— Might break in new and interesting ways
— Multitasking no guarantee to run on multiprocessor

® These are difficult issues for software developers
— Requires additional tool support
— Physical hardware is often not the best development platform

12

virtutech

(Embedded) Software Reality Today

Programmers used to single-threaded programs

Legacy code in C, C++, Java, Ada, assembler, Plex
— Essentially sequential languages
— Very little in concurrent languages like Erlang

Fine-grained parallelism added to sequential code
— OpenMP, pthreads, OS threads, MPI, special C variants, Java
threads, Ada concurrency, ...

Debuggers designed for single processors
— Or multiple instances of single processors

If we programmed using better languages, libraries, and tools,
many problems would go away.

13

D virtutech
P, Multiprocessors & Debug

" e Limited visibility into hardware
— Single debug port, multiple processors
— High speed, concurrent execution

® Timing-sensitive chaotic behavior
— Small changes in timing alters system behavior radically
— Hardware variations impact software behavior

® Lack of determinism

— Rerunning a program gives different results
— Hard to reproduce bugs

® Heisenbugs

— Inserting probes to trace behavior alters behavior
— Bugs hide when they are being debugged

® System keeps running even if one core stopped

14

virtutech
S

-

On a modern SoC, the
processor cores are just
one part of the system

<

Code is not just about CPUs

e500 core

32 KB 32 KB
D-Cache |-Cache

C

500 core
32 KB 32 KB
D-Cache D-Cache

|

Perf Mon Pattem SDRAM
Duart .. Maicher__ Coherency Controller
2x I’C EEIE Module
Timers < 4 I
>

Gigabit

Much application functionality
Is implemented by using
special accelerators... and you
need to debug their interaction
with the processors & software

Ethernet

_

15

8 virtutech

7

Virtual Hardware to the Rescue!

8 virtutech

P Three Steps of Debugging

4 1. Provoking errors
— Forcing the system to a state where things break

2. Reproducing errors
— Recreating a provoked error reliably

3. Locating and fixing errors
— Investigating the program flow and data
— Depends on success in reproduction

Virtualized hardware helps with all three steps

17

D virtutech

- Provoking Errors

& Virtualization provides complete control over
system configuration and execution

® Replicate failing tests from production units

® Vary system hardware configuration
— Like testing on a variety of real-world machines

® Vary system software configuration
— Easy to test different software loads on different machines

® Systematically provoke corner cases
— Use oddball processor counts
— Make a processor slower or stop it entirely
— Increase communication latencies
— Slow down individual processors to increase perceived load

_ v

18

virtutech

Py Funny Recent Issue

-

w o dhr [mﬁ.computerthatisrunninganxﬁﬁ-basedversion l_l i @ = = @ ~ sk Page v G @Tgul.sv @v

A computer that is running an x86-based version of Windows Server 2008 or
an x86-based version of Windows Vista may use fewer processors than
expected if the number of cores on a socket is not a power of 2 w

“iew products that this article applies to.
On This Page

m

+ SYMPTOMS Article ID : 950182
S CALUSE Last Review : April 11, 2008
G RESOLUTION Rewvision 1.2

“Hotfix information B
+Windows Server 2008

“ Prerequisites
“ Restart reguirement

Typical “untested

“Hotfix replacement information

menist . configuration because
“ Reaqistry information)

4 File information the hardware did not
+Windows Vista exist” error

“ Prerequisites

“ Restart requirement

“ Hotfix replacement information
“ Registry information
“File information

STATUS

4+ MORE INFORMATION

SYMPTOMS

Consider the following scenario:

* You have a computer that uses a multicore processor. The number of the cores on a socket is not a power of 2. For

example, the computer has a 6-core processor.

19

8 virtutech

P Reproducing Errors

{ ® Virtual hardware state can be checkpointed

® Virtual hardware execution is deterministic
— Simulation engine imposes a well-defined sequential semantic to
the parallel execution of the target machine
— All machine-internal events have deterministic time
— Input from real world recorded & replayed
— Successive

® An error is provoked in simulation can be reproduced
— Reset back to initial state (or restore a checkpoint)
— Rerun the test case that ended in error
— Same error state results
— ...any number of times
— ...on any machine running the simulator
— ...from a checkpoint distributed to multiple developers

20

8 virtutech

- Locating and Fixing Errors

& Determinism and control key features

® No probe effect from instrumentation
— Tracing and observation from the outside, not by code mod

® No timing disturbance from debugging
— Breakpoints behave like hardware breakpoints

® Global system stop
— For practical reasons, this has a small skid of 1-100kcycle

® Heisenbugs cannot occur
— No intrusion in timing behavior, no varying behavior

21

8 virtutech

S Repeatability and Reverse Debugging
{ ® Repeat any run trivially On hardware, only
— No need to rerun and hope SOMme funs
reproduce an error

for bug to reoccur
® Stop & go back in time —— *‘?

— Instead of rerunning
program from start ER NED DEEE Tl .

— Breakpoints & watchpoints
backwards in time _—#

— Investigate exactly what ﬁ———w
happened this time | g ¢

® This control and reliable
repeatability is very powerful _ B
for parallel code! w
L

On virtual hardware,
debugging is much

\ easier

22

8 virtutech

Some Bug Stories

8 virtutech
P Divide-by-zero in OS Kernel

& Operating-system kernel crash in virtual model

— Divide-by-zero right in the kernel
— Algorithm to determine and compensate for clock skew
— Division by difference in time between two processors

® Virtual model had zero clock skew = provoked error
— Could have happened on a real system

— Just not very likely
— Typical rare problem in the field
— Essentially testing a rare corner case in system state

24

D virtutech

S Race Condition in Serial Driver

{ ® The problem:
— Dual-core MPC8641D machine
— Changed clock frequency from 800 to 833 Mhz
— OS froze on startup — quite unexpectedly

® Investigation:
— Only happened at 832.9 to 833.3 MHz
— Determinism: 100% reproduction of error trivial
— Time control: single-step code feasible
— Insight: look at complete system state, log interrupts, check the call
stack at the point of the freeze, check lock state

® What we found:

— An interrupt service routine attempted to take a lock, before re-
enabling interrupts. In the case that froze, the lock was already
taken when the service routine was entered, and with no interrupts
enabled there was no way for it to be released.

25

D virtutech
P The Disk Corruption Example Bug

f ® Distributed fault-tolerant file system got corrupted

— Rack-based system with many (single-processor) boards

— Intermittent error

— Error seen as a composite state across multiple disks: they got
inconsistent, for some reason

— Months spent chasing it on physical hardware

® Simics solution:
— Reproduce corruption in Simics model of target
— Pin-point time when it happens, by interval halving
— Around the critical time, take periodic snapshots of disks
— Check consistency of disk states in offline scripts

® Result:
— Found the precise instruction causing the problem
— Capture the network traffic pattern causing the issue
— Communicated the complete setup and reproduction instructions
to development, greatly facilitating fixing the bug

26

8 virtutech

7

Validity of Virtual Debug

8 virtutech

S

“But it is just a simulation”

(e

Sometimes people do not believe in debugging using
a simulator... it is just a simulation after all, not the
real thing

All experience contradicts this
— Any bug found in a virtual environment is a real bug!
— Our customers are very happy with virtual debugging

Experimental evidence back up usefulness
— Coming up in next few slides!

28

ﬂ virtutech
—> Simplified Timing and Multicore

(o Simplified simulation is necessary to run workloads
— Simplify target timing to get performance [spare slide]
— Billions and billions of instructions to execute [spare slide]

® You still expose common concurrency bugs and coarse-

grain performance effects
— Race conditions

— Missing locks

— Lock contention

— Locking overhead

® The way to find bugs is not precise simulation of the

target but deliberate variation
— Do not rely on physical randomness
— Introduce controlled patterns, known variations
— Rely on repeatability of the simulator to find root errors

® Low-level code sometimes break because of timing-

related details such as cache coherency issues
— Use hybrid simulation to investigate failure scenarios with full
\ timing and pipeline and memory system details)

29

8 virtutech

P Locking Test Program: Find Race

{ ® Test on single core and
dualcore setups

— Range of frequencies
— Test program run 20
times on each setup ~ 100%

Simulator shows the
difference between
single-core and multi-
core setups in bug

Percentage of runs trig

— Count percentage of 9% aggressiveness

runs triggering race 80%
® Results: 7o%

— Race always triggers in =~ **
dual-CPU mode o

— Triggers around 10% in ‘;%//
single-CPU mode ot

— Higher clock = less L% ’A
chance to trigger 0%

Simulator: simple timing,
guantum 1000
Simplified timing does
not hide the race!

v

8 virtutech
S Locking Test Program: Contention

{ ® Observations:
— Locking overhead visible
"2 — Lock contention visible
\ —=— no locking — Only proper locking varies in
) —— fake locking | | execution time
\ e properiockng ® On real hardware:
" — no << fake << proper
. — Same relation seen in
E \ simulation, even if magnitude
é 0,6 varies
A
i
04 ® Test program details
\\ — 2 threads
o — 1000000 iterations
A A A — MPC8641D virtual target
= : — All locking disciplines
o l—S————=————= Lock contention | — Time quantum 10-10000
e quantu;:’"" execution time
penalty clearly
visible in simulator

31

8 virtutech

S

[® Virtual hardware provides an
additional tool for embedded
software development

® Frees software from
hardware dependence

® Especially useful for the

tough show-stopper bugs
— Parallel software
— Hardware-software
interaction
- — "Heisenbugs”

32

O virtutech

P Our Customers are Convinced

ﬂSimics Is really the only way to develop multi-core software”
-- Tomas Evensen, Chief Technical Officer, Wind River.

“The processing potential of multi-core devices remains
untapped because multicore systems are only as effective
as software’s ability to handle parallelism”

-- Chekib Akrout, former vice president and general
manager of Freescale’s Networking System Division.

33

8 virtutech

7

	The Benefits of System Simulation for Debugging Multicore Software
	Topic
	What Virtutech Does
	Virtualization for Software Developers
	What is Virtual Hardware?
	Virtutech Core Technology
	Runs the Same Software
	What Types of Systems Can be Virtualized?
	Why do we use Virtual Hardware?
	Multicore Computing and Parallel Software
	Electronics Is Software
	Future Embedded Systems Template
	Software Development for Multicore
	(Embedded) Software Reality Today
	Multiprocessors & Debug
	Code is not just about CPUs
	Virtual Hardware to the Rescue!
	Three Steps of Debugging
	Provoking Errors
	Funny Recent Issue
	Reproducing Errors
	Locating and Fixing Errors
	Repeatability and Reverse Debugging
	Some Bug Stories
	Divide-by-zero in OS Kernel
	Race Condition in Serial Driver
	The Disk Corruption Example Bug
	Validity of Virtual Debug
	“But it is just a simulation”
	Simplified Timing and Multicore
	Locking Test Program: Find Race
	Locking Test Program: Contention
	Summary
	Our Customers are Convinced
	Questions
	SPARES
	Power Architecture Multiprocessing
	Simulation Speed
	Workload Sizes
	Temporal Decoupling Speed Impact
	Vocabulary in the Multi Era
	Vocabulary in the Multi Era
	Example: Pursuit of a Race Condition
	Modeling Hardware for Virtual Software Development
	Modeling Your System
	Mapping a System For Modeling
	DML

