{'f TEXAS
INSTRUMENTS

MSP430x2xx Family

User’s Guide

2008 Mixed Signal Products
SLAU144E

About This Manual

Preface

Read This First

This manual discusses modules and peripherals of the MSP430x2xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections, and operational paramenters differ
from device to device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/msp430.

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

Glossary

ACLK
ADC
BOR
BSL
CPU
DAC
DCO
dst
FLL
GIE
INT(N/2)
I/0
ISR
LSB
LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
POR
PUC
RAM
SCG
SFR
SMCLK
SP
SR
src
TOS
WDT

Auxiliary Clock
Analog-to-Digital Converter
Brown-Out Reset
Bootstrap Loader

Central Processing Unit

Digital-to-Analog Converter

Digitally Controlled Oscillator

Destination

Frequency Locked Loop
General Interrupt Enable
Integer portion of N/2
Input/Output

Interrupt Service Routine
Least-Significant Bit
Least-Significant Digit
Low-Power Mode
Memory Address Bus
Master Clock

Memory Data Bus
Most-Significant Bit
Most-Significant Digit
(Non)-Maskable Interrupt
Program Counter
Power-On Reset
Power-Up Clear

Random Access Memory
System Clock Generator
Special Function Register
Sub-System Master Clock
Stack Pointer

Status Register

Source

Top-of-Stack

Watchdog Timer

See Basic Clock Module

See System Resets, Interrupts, and Operating Modes
See www.ti.com/msp430 for application reports
See RISC 16-Bit CPU

See Basic Clock Module
See RISC 16-Bit CPU
See FLL+in MSP430x4xx Family User’s Guide

See System Resets Interrupts and Operating Modes

See Digital /0

See System Resets Interrupts and Operating Modes

See Basic Clock Module

See System Resets Interrupts and Operating Modes
See RISC 16-Bit CPU

See System Resets Interrupts and Operating Modes
See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See Basic Clock Module
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See Watchdog Timer

Register Bit Conventions

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key

Bit Accessibility

rw
r
ro
r1
w
w0

wi

W)

ho
h1
-0,-1

Read/write
Read only
Read as 0
Read as 1
Write only
Write as 0
Write as 1

No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as O.

Cleared by hardware
Set by hardware
Condition after PUC

—(0),-(1) Condition after POR

vi

Contents

Contents

Introductionoiiiiii i i i i e e r 1-1
1.1 ArChIteCtUre . .o e 1-2
1.2 Flexible Clock System e 1-2
1.3 Embedded Emulation 1-3
1.4 AdAreSS SPaCEttt et e e 1-4
1.4.1 Flash/ROM 1-4

1.4.2 RAM L 1-5

1.4.3 PeripheralModules i 1-5

1.4.4 Special Function Registers (SFRS), 1-5

1.4.5 Memory Organizationo, 1-5

1.5 MSP430x2xx Family Enhancements i 1-7
System Resets, Interrupts, and OperatingModesccciiiiiant, 2-1
2.1 System Reset and Initialization i 2-2
2.1.1 Brownout Reset (BOR)ttt 2-3

2.1.2 Device Initial Conditions After System Reset 2-4

2.2 M eITUDES oo 2-5
2.2.1 (Non)-Maskable Interrupts (NMI) 2-6

222 Maskable Interrupts 2-9

2.2.3 Interrupt Processingot 2-10

224 Interrupt VECIOrs o 2-12

2.3 Operating Modest 2-14
2.3.1 Entering and Exiting Low-Power Modes 2-16

2.4 Principles for Low-Power Applications i, 2-17
2.5 Connectionof Unused Pins i 2-17
RISC16-Bit CPUciiiiiiiiii i ii ittt aasaasansasssnnsnssannnnnsnnns 3-1
3.1 CPUINtroduCtion e 3-2
3.2 CPU REQISIEIS ..ot 3-4
3.2.1 Program Counter (PC)o 3-4

3.2.2 Stack Pointer (SP)t 3-5

3.2.3 Status Register (SR)o 3-6

3.2.4 Constant Generator Registers CG1andCG2 3-7

3.2.5 General-Purpose Registers R4to R15 i, 3-8

3.3 Addressing Modes e 3-9
3.3.1 RegisterMode 3-10

3.32 Indexed MOde o 3-11

3.3.3 SymbolicMode 3-12

3.3.4 Absolute Mode 3-13

3.3.5 Indirect RegisterMode 3-14

3.3.6 Indirect AutoincrementMode 3-15

3.3.7 Immediate Mode 3-16

3.4 Instruction Set 3-17
3.4.1 Double-Operand (Format I) Instructions 3-18

3.4.2 Single-Operand (Format Il) Instructions 3-19

B4 3 JUMIPS . o 3-20

3.4.4 Instruction Cyclesand Lengths i, 3-72

3.4.5 Instruction Set Description 3-74

Vi

Contents

4

viii

16-Bit MSP430X CPUttt ittt eai i s nasansrsnnsnssannnnnennns 4-1
4.1 CPUINtroduCtion e 4-2
4.2 I erTUDES oo 4-4
4.3 CPUREQISIEIS ..ot 4-5
4.3.1 Program Counter PC 4-5
4.3.2 Stack Pointer (SP) 4-7
4.3.3 Status Register (SR)o 4-9
4.3.4 The Constant Generator Registers CG1and CG2 4-11
4.3.5 General-Purpose Registers R4to R15 i, 4-12
4.4 Addressing Modes e 4-15
441 RegisterMode 4-16
442 Indexed MOde i 4-18
443 SymbolicMode 4-24
444 Absolute Mode 4-29
445 Indirect RegisterMode 4-32
4.4.6 Indirect, AutoincrementMode 4-33
447 Immediate Mode 4-34
4.5 MSP430 and MSP430X Instructions i 4-36
4.5.1 MSP430 INStructionsttt 4-37
4.5.2 MSP430X Extended Instructions, 4-44
4.6 Instruction Set Description 4-58
4.6.1 Extended Instruction Binary Descriptions 4-59
4.6.2 MSPA430 INStructionsottt 4-61
4.6.3 Extended Instructions i 4-113
4.6.4 Address Instructions 4-156
Basic Clock Module+t ii it iiasinrsaainsrannnnnrnnns 5-1
5.1 Basic Clock Module+ Introduction i, 5-2
5.2 Basic Clock Module+ Operation et 5-4
5.2.1 Basic Clock Module+ Features for Low-Power Applications 5-4
5.2.2 Internal Very Low Power, Low Frequency Oscillator 5-4
52.3 LFXT1Oscillator.o 5-5
524 XT2O0scillator 5-6
5.2.5 Digitally-Controlled Oscillator (DCO)« 5-6
52.6 DCOMOAUIAtOr it 5-9
5.2.7 Basic Clock Module+ Fail-Safe Operation 5-10
5.2.8 Synchronization of Clock Signals oo, 5-12
5.3 Basic Clock Module+ Registerst 5-13

Contents

6 DMA Controllercciiiiiiiiii it aaain s saasaseannnnsrannnnnsnnns
6.1 DMA INtrodUCtIONo
6.2 DMA Operation

6.2.1 DMA AddressingModes
6.22 DMA Transfer Modes e
6.2.3 Initiating DMA Transfers i
6.2.4 Stopping DMA Transferst
6.2.5 DMA Channel Priorities
6.26 DMA TransferCycle Timet i
6.2.7 Using DMA with System Interrupts L.
6.2.8 DMA Controller Interruptst
6.2.9 Using the USCI_B 12C Module with the DMA Controller
6.2.10 Using ADC12 with the DMA Controllert
6.2.11 Using DAC12 With the DMA Controller,
6.2.12 Writing to Flash With the DMA Controller
6.3 DMA Registerso

7 Flash Memory Controllerc.oiiiiiiii it iai i aeainseannnaneanns
7.1 Flash Memory Introduction it
7.2 Flash Memory Segmentation i

7.2 SegmMeENtA e
7.3 Flash Memory Operation i
7.3.1 Flash Memory Timing Generatorccoiiiiiiiiiinaaann.
7.3.2 Erasing Flash Memory i
7.3.3 Writing Flash Memory
7.3.4 Flash Memory Access During WriteorErase
7.3.5 StoppingaWriteorErase Cycle i,
7.3.6 MarginalRead Mode
7.3.7 Configuring and Accessing the Flash Memory Controller
7.3.8 Flash Memory Controller Interruptso,
7.3.9 Programming Flash Memory Devices,
7.4 Flash Memory Registers i e

8 Digital Oii i e aia s ia e e
8.1 Digital I/O Introduction i
8.2 Digital I/O Operationt

8.2.1 Input Register PxIN
8.2.2 Output Registers PXOUT i
8.2.3 Direction Registers PXDIR
8.2.4 Pull-Up/Down Resistor Enable Registers PXREN
8.2.5 Function Select Registers PxXSEL and PxSEL2
8.2.6 PlandP2interrupts
8.2.7 ConfiguringUnused PortPins i,
8.3 Digital /O Registers

6-1
6-2
6-4
6-4
6-5
6-12
6-14
6-14
6-15
6-16
6-16
6-17
6-18
6-18
6-18
6-19

7-1
7-2
7-3
7-4
7-5
7-5
7-7
7-10
7-16
7-17
7-17
7-17
7-18
7-18
7-20

Contents

9 Supply Voltage SUPerviSOrcuitiiiriieraanraanreanrranrransannnnnnns 9-1
9.1 SVS INtrodUCHioNo 9-2

9.2 SVS Operation 9-4
9.2.1 Configuringthe SVS 9-4

9.2.2 SVS Comparator Operationo, 9-4

9.2.3 Changingthe VLDX Bitst 9-5

9.24 SVSOperating Rangeot 9-6

9.3 SVS RegiSters . ..ot 9-7

10 Watchdog Timer+ouviii ittt e i e i eas s nsnrnsn s nanrnansnannnns 10-1
10.1 Watchdog Timer+ Introduction i 10-2
10.2 Watchdog Timer+ Operation e 10-4
10.2.1 Watchdog timer+ Counter 10-4

10.2.2 WatchdogMode i e 10-4

10.2.3 Interval TimerMode 10-4

10.2.4 Watchdog Timer+ Interrupts 10-5

10.2.5 Watchdog Timer+ Clock Fail-Safe Operation 10-5

10.2.6 Operationin Low-PowerModes, 10-6

10.2.7 Software Examples 10-6

10.3 Watchdog Timer+ Registers e 10-7

11 Hardware Multiplier ... i it i i i e n e nannnas 11-1
11.1 Hardware Multiplier Introduction 11-2
11.2 Hardware Multiplier Operationc i 11-3
11.2.1 Operand Registers i 11-3

11.2.2 Result Registers 11-4

11.2.3 Software Examples 11-5

11.2.4 Indirect Addressing of RESLO i, 11-6

11.2.5 Using Interrupts o 11-6

11.3 Hardware Multiplier Registers i 11-7

L7 T 1 1= L N 12-1
12,1 Timer_A Introduction e 12-2
12.2 Timer_A Operationt e 12-4
12.2.1 16-Bit Timer Countert i 12-4

12.2.2 Startingthe Timer e 12-5

12.2.3 Timer Mode Controlt e 12-5

12.2.4 Capture/Compare BIoCkS 12-11

1225 Output Unit ..o 12-13

12.2.6 Timer_A Interrupts e 12-17

12.3 Timer_A Registers e 12-19

13

14

15

Contents

0.1 1= = 13-1
13.1 Timer_B Introduction i e 13-2
13.1.1 Similarities and Differences From Timer_A 13-2
13.2 Timer_B Operationt e 13-4
13.21 16-Bit TimerCounter i i i 13-4
13.2.2 Startingthe Timer e 13-5
13.2.3 TimerMode Control i i i 13-5
13.2.4 Capture/Compare BIOoCkS 13-11
13.2.5 Output Unit ..o 13-14
13.2.6 Timer_B Interrupts e 13-18
13.3 Timer_B Registers e 13-20
Universal Serial Interfaceot it ie i eae e eaennannnnnn 14-1
14.1 USlIntroduction e 14-2
14.2 USIOperation e 14-5
14.21 USl Initialization 14-5
14.2.2 USIClock Generation 14-6
1423 SPIMOGE . ..o e 14-6
1424 12C MOAE . ..ot e 14-9
14.3 USI ReQiSters . ..ot e 14-13
Universal Serial Communication Interface, UARTMode 15-1
15.1 USCIOVEIVIEW . .. e e e 15-2
15.2 USCI Introduction: UART Modet e 15-3
15.3 USCI Operation: UART Modet i e 15-5
15.3.1 USCI Initializationand Reset 15-5
15.3.2 Character Format 15-5
15.3.3 Asynchronous Communication Formats 15-6
15.8.4 Automatic Baud Rate Detection, 15-10
15.3.5 IrDA Encodingand Decodingc.ooiuiiiiiiiiiniien. 15-12
15.8.6 Automatic ErrorDetection 15-13
15.3.7 USCIReceiveEnable 15-14
15.3.8 USCI TransmitEnable 15-15
15.3.9 UART Baud Rate Generation i, 15-15
15.3.10 SettingaBaud Rate i 15-18
15.3.11 Transmit Bit Timing oo e 15-19
15.3.12 Receive Bit TImingo o 15-20
15.3.13 Typical Baud Ratesand Errors 15-21
15.3.14 Using the USCI Module in UART Mode with Low Power Modes 15-25
15.3.15 USCI INterruptso 15-25
15.4 USCI Registers: UART MOdEttt 15-27

xi

Contents

16 Universal Serial Communication Interface, SPIMode 16-1
16.1 USCI OVEIVIBW . . oot e e e e e e et 16-2
16.2 USCI Introduction: SPIMode i 16-3
16.3 USCI Operation: SPIMOde e 16-5

16.3.1 USCI Initializationand Reset i i, 16-6
16.3.2 Character Format 16-6
16.3.3 Master Mode e 16-7
16.3.4 Slave Mode o 16-9
16.3.5 SPIEnable 16-10
16.3.6 Serial Clock Control i 16-11
16.3.7 Using the SPI Mode with Low Power Modes 16-12
16.3.8 SPlINterrupts 16-13
16.4 USCI Registers: SPIMOdEttt e 16-15

17 Universal Serial Communication Interface,I2CModecooo.... 17-1
171 USCIOVEIVIBW . oottt et et e et e e e it 17-2
17.2 USCI Introduction: I2C Modet e 17-3
17.3 USCI Operation: I2C Modet i e 17-5

17.3.1 USCI Initializationand Reset i i, 17-6
17.3.2 12C Serial Datat 17-7
17.3.3 12C Addressing Modescoiiiiiii i 17-8
17.3.4 12C Module Operating Modest 17-9
17.3.5 12C Clock Generation and Synchronization 17-21
17.3.6 Using the USCI Module in 12C Mode with Low Power Modes 17-22
17.3.7 USCl Interrupts in I2CModecco i, 17-23
17.4 USCI Registers: I2C Modet i 17-25

1 Z010 18-1
18.1 OA INtroduction o e 18-2
18.2 OA OPEerationttt e 18-4

18.2.1 OA Amplifier 18-4
18.2.2 OA INPUL Lo 18-4
18.2.3 OA Output and Feedback Routing, 18-5
18.2.4 OA Configurationsot e 18-6
18.3 OA RegiSters . . oo e 18-12

19 Comparator A+ttt it aasaa s a s e s 19-1
19.1 Comparator_A+ Introduction i 19-2
19.2 Comparator_A+ Operation e 19-4

19.2.1 COMPAratOrttt e e 19-4
19.2.2 Input Analog Switches i 19-4
19.2.3 Input Short Switch 19-5
19.2.4 Output Filtero 19-6
19.2.5 Voltage Reference Generator, 19-6
19.2.6 Comparator_A+, Port Disable Register CAPD 19-7
19.2.7 Comparator_ A+ Interrupts 19-7
19.2.8 Comparator_A+ Used to Measure Resistive Elements 19-8
19.3 Comparator_A+ Registers e 19-10

Xii

20

21

22

23

Contents

40 L 20-1
20.1 ADCT0 Introductionttt 20-2
20.2 ADCTI0 Operationttt 20-4
20.2.1 10-Bit ADC COre . . oottt e 20-4
20.2.2 ADC10 Inputs and Multiplexeroiiiiiiiiiiiiinnn. 20-5
20.2.3 Voltage Reference Generatorooiiiiiiiiiiiiinaann. 20-6
20.2.4 Auto Power-DOWNn 20-6
20.2.5 Sample and Conversion TIMINGttt 20-7
20.2.6 Conversion MOdesttt 20-9
20.2.7 ADC10 Data Transfer Controller, 20-15
20.2.8 Using the Integrated Temperature Sensorcovovnn.. 20-21
20.2.9 ADC10 Grounding and Noise Considerations 20-22
20.2.10 ADC10 INterrupts oe i e 20-23
20.3 ADCTI0 Registersttt 20-24
0 211
21.1 ADCI2 Introductiont 21-2
21.2 ADCI12 Operationt 21-4
21.21 12-Bit ADC COre . .ottt 21-4
21.2.2 ADC12 Inputs and Multiplexeroo i, 21-5
21.2.3 Voltage Reference Generator, 21-6
21.2.4 Sample and Conversion TiMINGt 21-7
21.2.5 Conversion MemOryttt 21-10
21.2.6 ADC12 Conversion MOdesSttt 21-10
21.2.7 Using the Integrated Temperature Sensor, 21-16
21.2.8 ADC12 Grounding and Noise Considerations 21-17
21.2.9 ADCI2 INterrupts 21-18
21.3 ADCI2 Registerst 21-20
TLV Structure ... ittt et i a e a s 22-1
221 TLV INtroducCtion i e 22-2
222 SUPPOMEA TagS - - oot ettt e et e e e e 22-3
22.2.1 DCO Calibration TLV Structurecoiiiiiiiiiinn.. 22-3
22.2.2 TAG_ADC12_1 Calibration TLV structure 22-4
22.3 957 Checking Integrity of SegmentA
22.4 Parsing TLV Structure of Segment A 22-8
0 Y O 23-1
23.1 DACT12Introductionttt 23-2
23.2 DACTI2 0perationttt 23-4
23.2.1 DACTI2 GO0 . ettt it et e et e e 23-4
23.2.2 DAC12Referencecooiiiii 23-5
23.2.3 Updating the DAC12 Voltage Output, 23-5
23.2.4 DAC12 xDAT Data Formato, 23-6
23.2.5 DAC12 Output Amplifier Offset Calibration 23-7
23.2.6 Grouping Multiple DAC12 Modules, 23-8
23.2.7 DACI2INterruptsooti i 23-9
23.3 DACTI2 Registersttt 23-10

xiii

Contents

P2 0 < 2441
241 SD16_A Introduction i 24-2
242 SD16_A Operationttt 24-4

2421 ADC COrE .ottt e 24-4
24.2.2 AnalogInput Range and PGA i 24-4
24.2.3 Voltage Reference Generator, 24-4
24.2.4 Auto Power-DOWNn 24-4
24.2.5 Analog Input Pair Selection i 24-5
24.2.6 Analog Input Characteristics o i 24-6
24.2.7 Digital Filter 24-7
24.2.8 Conversion Memory Register: SD16MEMO 24-11
24.2.9 Conversion MOAESttt 24-12
24.2.10 Using the Integrated Temperature Sensorcou... 24-14
24211 Interrupt Handlingo 24-15
24.3 SD16_A Registers 24-16

25 Embedded Emulation Module (EEM)ccoiiiiiiiiiniriiiinrrnnannnennns 25-1
251 EEM Introduction 25-2
252 EEMBUIIdINg BIOCKS 25-4

25, 2.1 THgOEIS ottt e 25-4
25.2.2 Trigger SEQUENCETottt e et 25-5
25.2.3 State Storage (Internal Trace Buffer) coiiaL. 25-5
25.2.4 Clock Control 25-5
25.3 EEM Configurationst 25-6

Xiv

Chapter 1

Introduction

This chapter describes the architecture of the MSP430.

Topic Page
ol GEIEEITR cooooono00C 1-2
1.2 Flexible Clock Systemciiiiiiiiiiiiiiiii i naens 1-2
1.3 Embedded Emulationcccoiiiiiiiiiiiiiiiiiiiiie 1-3
U LCBEEB&EEES 0o00C 14
1.5 MSP430x2xx Family Enhancementsc000tt 1-7

1-1

Architecture

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430x2xx family include:

(1 Ultralow-power architecture extends battery life
W 0.1-pA RAM retention
B 0.8-pA real-time clock mode

W 250-pA/MIPS active

(1 High-performance analog ideal for precision measurement

Bm Comparator-gated timers for measuring resistive elements

[0 16-bit RISC CPU enables new applications at a fraction of the code size.
W Large regqister file eliminates working file bottleneck
Compact core design reduces power consumption and cost

Optimized for modern high-level programming

Only 27 core instructions and seven addressing modes

B Extensive vectored-interrupt capability

[In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 2 us at 1 Mhz.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

(1 Low-frequency auxiliary clock = Ultralow-power stand-by mode

[High-speed master clock = High performance signal processing

1-2 Introduction

Embedded Emulation

Figure 1-1. MSP430 Architecture

r-—--—-""-"--"-"-"--\"-"\"="-—F"="-"°FF¥F""""-"""-""""¥"=""”""""" A
| |
Clock [# ACLK Flash/ : . .
RAM Peripheral[—|Peripheral[—|Peripheral

= System |, cycik| ROM P [|7erP | [FenP =
| MCLK VANPAN AN JANK | VANIE IVANEE | |
I I
! ol mews| @ > F— — | |
| | RISC CPU § |
| 16-Bit & |
| s I
5H - | - N |

l [VDB16Bit Bus K MDB 8-Bit) |
JTAG |
I N NS \l\/ NS 8 AR) AR / |
I ACLK —¥ — —] |
: SMCLK —» Watchdog [| Peripheral Peripheral[—|Peripheral[|Peripheral I
I I
e e <

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

[Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

(1 Development is in-system subject to the same characteristics as the final
application.

(1 Mixed-signal integrity is preserved and not subject to cabling interference.

Introduction 1-3

Address Space

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1-2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is currently 128 KB.

Figure 1-2. Memory Map

1.4.1

1-4

Flash/ROM

Introduction

Access
1FFFFh
Flash/ROM Word/Byte
10000h
OFFFFh
Interrupt Vector Table Word/Byte
OFFEOh
OFFDFh
Flash/ROM Word/Byte
;
v RAM Word/Byte
0200h
01FFh
16-Bit Peripheral Modules Word
0100h
OFFh .)
8-Bit Peripheral Modules Byte
010h
OFh . i)
oh Special Function Registers Byte

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is Ox1FFFF.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (0x1FFFF).

Address Space

1.4.2 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to OFFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1-3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Introduction 1-5

Address Space

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

(XY} XxxAh

15 14 ..Bits.. | 9 8 xxx9h
7 6 .. Bits . . 1 0 xxx8h
Byte XXX7h

Byte Xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xxx4h

(XY} xxx3h

1-6 Introduction

MSP430x2xx Family Enhancements

1.5 MSP430x2xx Family Enhancements

Table 1-1 highlights enhancements made to the MSP430x2xx family. The
enhancements are discussed fully in the following chapters, or in the case of
improved device parameters, shown in the device-specific data sheet.

Table 1-1. MSP430x2xx Family Enhancements

Subject Enhancement

Reset — Brownout reset is included on all MSP430x2xx devices.
— PORIFG and RSTIFG flags have been added to IFG1 to indicate
the cause of a reset.
— An instruction fetch from the address range 0x0000 — OxO1FF
will reset the device.

Watchdog — All MSP430x2xx devices integrate the Watchdog Timer+

Timer module (WDT+). The WDT+ ensures the clock source for the
timer is never disabled.

Basic Clock — The LFXT1 oscillator has selectable load capacitors in LF mode.

System — The LFXT1 supports up to 16-MHz crystals in HF mode.

— The LFXT1 includes oscillator fault detection in LF mode.

— The XIN and XOUT pins are shared function pins on 20- and
28-pin devices.

— The external Rpgc feature of the DCO not supported on some
devices. Software should not set the LSB of the BCSCTL2
register in this case. See the device-specific data sheet for
details.

— The DCO operating frequency has been significantly increased.

— The DCO temperature stability has been significantly improved.

Flash Memory - The information memory has 4 segments of 64 bytes each.
— SegmentA is individually locked with the LOCKA bit.
— All information if protected from mass erase with the LOCKA bit.
— Segment erases can be interrupted by an interrupt.
— Flash updates can be aborted by an interrupt.
— Flash programming voltage has been lowered to 2.2 V
— Program/erase time has been reduced.
— Clock failure aborts a flash update.

Digital I/0 — All ports have integrated pullup/pulldown resistors.
— P2.6 and P2.7 functions have been added to 20- and 28- pin
devices. These are shared functions with XIN and XOUT.
Software must not clear the P2SELXx bits for these pins if crystal
operation is required.

Comparator_ A — Comparator_A has expanded input capability with a new input
multiplexer.
Low Power — Typical LPM3 current consumption has been reduced almost
50% at 3 V.
— DCO startup time has been significantly reduced.
Operating — The maximum operating frequency is 16 MHz at 3.3 V.
frequency
BSL — An incorrect password causes a mass erase.

— BSL entry sequence is more robust to prevent accidental entry
and erasure.

Introduction 1-7

1-8 Introduction

Chapter 2

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x2xx system resets, interrupts, and
operating modes.

Topic Page
2.1 System Reset and Initializationiiiiaa, 2-2
2.2 Interruptsciiiiiiiiiai it et a e a s 2-5
72 (i) et E8a00a0000000000000000000000000000000000000004C 2-14
2.4 Principles for Low-Power Applications 2-17
2.5 ConnectionofUnusedPinsccoviiiiiiiiiiininnnnnn, 2-17

2-1

System Reset and Initialization

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2—1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2—-1. Power-On Reset and Power-Up Clear Schematic

Vee

Brownout

Reset o POR
S Latch » POR

| >R
oV ~50 ps

SVS_POR? ﬂ E

RST/NMI
WDTNMIT

WDTTMSEL #———(O ™\
wbDTQnt

WDTIFGT —E _/ Resetwd!
aur B

KEYV

(from flash module) T

Invalid i ion fetch
nvalid instruction fetc MCLK

PUC

b ® 0 0o

¢ YVVYYVYY

T From watchdog timer peripheral module
¥ Devices with SVS only

A POR is a device reset. A POR is only generated by the following three
events:

(1 Powering up the device
[A low signal on the RST/NMI pin when configured in the reset mode
O An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

(1 A POR signal
[Watchdog timer expiration when in watchdog mode only
(1 Watchdog timer security key violation

(1 A Flash memory security key violation

U

A CPU instruction fetch from the peripheral address range Oh — 01FFh

2-2 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.1.1 Brownout Reset (BOR)

The brownout reset circuit detects low supply voltages such as when a supply
voltage is applied to or removed from the V¢ terminal. The brownout reset
circuit resets the device by triggering a POR signal when power is applied or
removed. The operating levels are shown in Figure 2-2.

The POR signal becomes active when V¢ crosses the Viogstart) level. It
remains active until Vgc crosses the V(g 14 threshold and the delay tgor)
elapses. The delay tgoR is adaptive being longer for a slow ramping Vcc. The
hysteresis Vs _1T-) ensures that the supply voltage must drop below
V(e_iT-) to generate another POR signal from the brownout reset circuitry.

Figure 2-2. Brownout Timing

A
| | V, | |
| | <e | |
Vhys(lB_IT—) : : I
Ve v | S T
VBT trt—— A ———————————— <
I I | |
Vec(starty |- ——— - == N

Set Signal for
POR circuitry

As the V(g_T_ level is significantly above the Vi, level of the POR circuit, the
BOR provides a reset for power failures where V¢ does not fall below Vpin.
See device-specific data sheet for parameters.

System Resets, Interrupts, and Operating Modes 2-3

System Reset and Initialization

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

4
J

L

Software Initialization

2-4

The RST/NMI pin is configured in the reset mode.
I/0 pins are switched to input mode as described in the Digital I/O chapter.

Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

Status register (SR) is reset.
The watchdog timer powers up active in watchdog mode.

Program counter (PC) is loaded with address contained at reset vector
location (OFFFENh). If the reset vectors content is OFFFFh the device will
be disabled for minimum power consumption.

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

J
4
a

Initialize the SP, typically to the top of RAM.
Initialize the watchdog to the requirements of the application.

Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2—-3. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

[System reset
1 (Non)-maskable NMI
(1 Maskable

Figure 2-3. Interrupt Priority

Priority High

_ Low

CPU

GMIRS
C— GIE
Module Module WDT Module Module

NMIRS 1 2 Timer m n

A4

PUC

A

| TNE NA Fax, AL AT,

<o

PUC

Circuit

OSCfault
Flash ACCV

Nl Reset/NMI

T

T

PN

WDT Security Key

Flash Security Key N~ N4 NN NN NS S

MAB - 5LSBs >

System Resets, Interrupts, and Operating Modes 2-5

System Reset and Initialization

2.2.1 (Non)-Maskable Interrupts (NMI)

Reset/NMI Pin

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (NMIIE, ACCVIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, OFFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2—4.

A (non)-maskable NMI interrupt can be generated by three sources:
[An edge on the RST/NMI pin when configured in NMI mode
1 An oscillator fault occurs

[An access violation to the flash memory

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, OFFFEh, and the RSTIFG flag is set.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMlI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

2-6 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Figure 2—-4. Block Diagram of (Non)-Maskable Interrupt Sources

ACCV j

ACCVIFG
D
FCTL3.2 —
S
PORIFG
ACCVIE IFG1.2 [
IE1.5
Clear
PUC I
RST/NMI Flash Module
[>—e—o *
S
o1 s RSTIFG POR PUC
Clear
\ yV KEYV SVS_POR BOR
POR I I I
> —» PUC
- System Reset
_F d Generator
*———Pp —» POR
A A
A
s' NMIIFG
IFG1.4 Clear WDTTMSEL
WDTNMIES WDTNMI wDTQn EQU PUC POR
I I | j L AI
PUC
NMIIE r“——I———T ————— e
I < WDTIFG I
IE1.4 I }mo I
Clear I IFG1.0 — I
| Clear |
PUC J 1 | wDT I
| Counter |
OSCFault j I POR |
OFIFG I I
S —\ | I
IFG1.1 |/ I I
: IRQA I
I
OFIE | WDTTMSEL |
| WDTIE |
1IE1.1 | |
Clear
| IE1.0 |
Clear
oue 4 4 NmLIRaA) | |
I I
I Watchdog Timer Module PUC I
IRQA: Interrupt Request Accepted L - - - - - |
System Resets, Interrupts, and Operating Modes 2-7

System Reset and Initialization

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

2-8 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2-5.

Figure 2-5. NMI Interrupt Handler

Reset by HW:

Start of NMI Interrupt Handler
OFIE, NMIIE, ACCVIE

[
|

Reset OFIFG

Reset ACCVIFG

Reset NMIIFG

.

-

+

User’s Software,

User’s Software,

User’s Software,

Oscillator Fault Flash Access External NMI
Handler Violation Handler Handler
Optional v
RETI)
End of NMI Interrupt
Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Resets, Interrupts, and Operating Modes 2-9

System Reset and Initialization

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only
the individual enable bit must be set for (non)-maskable interrupts to be
requested.

Interrupt Acceptance

The interrupt latency is 5 cycles (CPUXx) or 6 cycles (CPU), starting with the
acceptance of an interrupt request, and lasting until the start of execution of
the first instruction of the interrupt-service routine, as shown in Figure 2-6.
The interrupt logic executes the following:

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the stack.
3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) The SR is cleared. This terminates any low-power mode. Because the GIE
bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2-6. Interrupt Processing

Before After
Interrupt Interrupt
Item1 Item1
SP —» Item2 TOS Item2
PC
SP —» SR TOS

2-10 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Return From Interrupt
The interrupt handling routine terminates with the instruction:
RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles (CPU) or 3 cycles (CPUx) to
execute the following actions and is illustrated in Figure 2-7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2-7. Return From Interrupt

Before After
Return From Interrupt

ltem1 ltem1
Item2 SP —» Item2 TOS
PC PC
SP —» SR TOS SR

Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Resets, Interrupts, and Operating Modes 2-11

System Reset and Initialization

224

2-12

Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range OFFFFh to OFFCOh, as described in Table 2-1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt
vector list.

It is recommended to provide an interrupt service routine for each interrupt
vector that is assigned to a module. A dummy interrupt service routine can
consist of just the RET]I instruction and several interrupt vectors can point to
it.

Unassigned interrupt vectors can be used for regular program code if
necessary.

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.
See the device-specific data sheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Table 2—-1. Interrupt Sources, Flags, and Vectors

SYSTEM WORD

INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT ADDRESS PRIORITY
ot watcndog, | PORIFG |
flash p.asswor_d, WDTIFG Reset OFFFEh 31, highest
illegal instruction KEYV

fetch

NMI, oscillator fault, NMIIFG (non)-maskable

flash memory access OFIFG (non)-maskable OFFFCh 30
violation ACCVIFG (non)-maskable

device-specific OFFFAh 29
device-specific OFFF8h 28
device-specific OFFF6h 27
Watchdog timer WDTIFG maskable OFFF4h 26
device-specific OFFF2h 25
device-specific OFFFOh 24
device-specific OFFEEh 23
device-specific OFFECh 22
device-specific OFFEAh 21
device-specific OFFES8h 20
device-specific OFFE6h 19
device-specific OFFE4h 18
device-specific OFFE2h 17
device-specific OFFEOh 16
device-specific OFFDEh 15
device-specific OFFDCh 14
device-specific OFFDAhRh 13
device-specific OFFD8h 12
device-specific OFFD6h 11
device-specific OFFD4h 10
device-specific OFFD2h 9
device-specific OFFDOh 8
device-specific OFFCEh 7
device-specific OFFCCh 6
device-specific OFFCAh 5
device-specific OFFC8h 4
device-specific OFFC6h 3
device-specific OFFC4h 2
device-specific OFFC2h 1
device-specific OFFCOh 0, lowest

System Resets, Interrupts, and Operating Modes 2-13

Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2-9.

The operating modes take into account three different needs:
1 Ultralow-power
(1 Speed and data throughput

(1 Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-8.

Figure 2-8. Typical Current Consumption of 21x1 Devices vs Operating Modes

lcc/uA at 1 MHz

315 -
270 -
225 1
180 1
135

300

90 1
45

0.9 0.7 0.10.1

—

AM LPMO LPM2 LPM3 LPM4
Operating Modes

The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF,
SCGO, and SCGH1 bits in the status register The advantage of including the
CPUOFF, OSCOFF, SCGO0, and SCG1 mode-control bits in the status register
is that the present operating mode is saved onto the stack during an interrupt
service routine. Program flow returns to the previous operating mode if the
saved SR value is not altered during the interrupt service routine. Program flow
can be returned to a different operating mode by manipulating the saved SR
value on the stack inside of the interrupt service routine. The mode-control bits
and the stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

2-14 System Resets, Interrupts, and Operating Modes

Operating Modes

Figure 2-9. MSP430x2xx Operating Modes For Basic Clock System

RST/NMI SVS_POR
Reset Active
POR
WDT
Time Expired, Overflow WDTIFG = 1 WDTIFG =0
PUC) RST/NMIis Reset Pin
WDTIFG = 1 WDT is Active
. RST/NMI
WDT Active, NMI Active
Security Key Violation
Active Mode
CPUOFF = 1 _ CPUlsActive CPUOFF = 1
SCGO =0 Peripheral Modules Are Active OSCOFF = 1
SCG1=0 SCGO =1
SCG1 =1
LPMO
LPM4
S%F;;ULS% Mgéﬁ?g CPU Off, MCLK Off, DCO
n. n Off, SMCLK Off,
ACLK Off
CPUOFF =1 DG G tor Off
ggg? — g) CPUOFF = 1 enerator
- CPUOFF = 1 SCGO =1
CPU Off, MCLK Off, SCG1 =1 CPU Off, MCLK Off, SMCLK
DCO off, SMCLK On, Off, DCO Off, ACLK On
ACLK On LPM2
CPU Off, MCLK Off, SMCLK
DC Generator Off if DCO Off, DCO Off, ACLK On DC Generator Off
not used for SMCLK
SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 0 Active CPU is active, all enabled clocks are active
0 0 0 1 LPMO CPU, MCLK are disabled
SMCLK , ACLK are active
0 1 0 1 LPM1 CPU, MCLK are disabled, DCO and DC generator

are disabled if the DCO is not used for SMCLK.
ACLK is active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

System Resets, Interrupts, and Operating Modes 2-15

Operating Modes

2.3.1

2-16

Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power

operating modes. The program flow is:

(1 Enter interrupt service routine:

B The PC and SR are stored on the stack
B The CPUOFF, SCG1, and OSCOFF bits are automatically reset

(O Options for returning from the interrupt service routine:

W The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

Enter LPMO Example
BIS #GIE+CPUOFF, SR ; Enter LPMO
; Program stops here

Exit LPMO Interrupt Service Routine
BIC #CPUOFF, 0 (SP) ; Exit LPMO on RETI
RETT

Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0O,SR ; Enter LPM3
; Program stops here

Exit LPM3 Interrupt Service Routine
BIC #CPUOFF+SCG1+SCGO, 0 (SR) ; Exit LPM3 on RETI
RETT

System Resets, Interrupts, and Operating Modes

Principles for Low-Power Applications

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 pA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-us wake-up.

[d Use interrupts to wake the processor and control program flow.

(4 Peripherals should be switched on only when needed.

[d Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

[Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

1 Avoid frequent subroutine and function calls due to overhead.

(4 For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2-2.

Table 2-2. Connection of Unused Pins

Pin Potential Comment

AVce DVce

AVgs DVss

VREF+ Open

VeRer.+ DVss

VRrer/Verer- DVss

XIN DVcc

XOouT Open

XT2IN DVss

XT20UT Open

Px.0to Px.7 Open Switched to port function, output direction
or input with pullup/pulldown enabled

RST/NMI DVgcorVee 47 kQ pullup with 10 nF (2.2 nFT) pulldown

Test Open 20xx, 21xx, 22xx devices

TDO Open

TDI Open

TMS Open

TCK Open

T The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire
interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with Tl tools like FET interfaces or
GANG programmers.

System Resets, Interrupts, and Operating Modes 2-17

2-18 System Resets, Interrupts, and Operating Modes

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and
instruction set.

Topic Page
3.1 CPUlIntroductioncciiiiiiiiiiiiiiiiiiiiannninnnnnnnns 3-2
3.2 CPUReQISterscoiiiiiiiiiiiiaiinraasnrnnannnrannnnnsnns 34
g8 LAlEssIne) WEeES cooooo00000000000000000000000000000000000000¢ 3-9
34 InstructionSeto 3-17

3-1

CPU Introduction

3.1 CPU Introduction

3-2

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

J
a

a
-

RISC architecture with 27 instructions and 7 addressing modes

Orthogonal architecture with every instruction usable with every
addressing mode

Full register access including program counter, status registers, and stack
pointer

Single-cycle register operations
Large 16-bit register file reduces fetches to memory

16-bit address bus allows direct access and branching throughout entire
memory range

16-bit data bus allows direct manipulation of word-wide arguments

Constant generator provides six most used immediate values and
reduces code size

Direct memory-to-memory transfers without intermediate register holding

Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3-1.

RISC 16-Bit CPU

Figure 3—1. CPU Block Diagram

MDB - Memory Data Bus

AN

15 0

CPU Introduction

Memory Address Bus — MAB

AN

RO/PC Program Counter |0

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

QA

L0000 III0EITTY

R10 General Purpose
Ll | -
R11 General Purpose
Ll | -
R12 General Purpose
Ll | -
R13 General Purpose
Ll | -
R14 General Purpose
Ll | -
R15 General Purpose
~
16 |] N6
Zero, Z —
832??]0%, v 16-bit ALU MCLK
Negative, N
<
A4

RISC 16-Bit CPU

3-3

CPU Registers

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. RO, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3-2 shows the program counter.

Figure 3-2. Program Counter
15 A"

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL, PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to address contained in LABEL
MOV @R14, PC ; Branch indirect to address in R14

3-4 RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

CPU Registers

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3—-4 shows stack usage.

Figure 3-3. Stack Pointer

15 1 0
Stack Pointer Bits 15 to 1 0
MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h onto TOS
POP R8 ; R8 = 0123h
Figure 3-4. Stack Usage
Address PUSH #0123h POP R8
Oxxxh | i 1
Oxxxh — 2 12 12 12
Oxxxh — 4 13 <— SP 13 I3 <— SP
Oxxxh — 6 0123h [&— SP| 0123h
Oxxxh — 8

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PUSH SP

SPOId —b

SP; —¥ SPq

The stack pointer is changed after
a PUSH SP instruction.

POP SP

SP, —¥ SP4

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

RISC 16-Bit CPU 3-5

CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3—6 shows the SR bits.

Figure 3-6. Status Register Bits

15

9 8 7 0

OSC|CPU

SCa1 OFF [OFF

Reserved \% SCGO GIE| N|Z|C

rw-0

Table 3—1 describes the status register bits.

Table 3—1. Description of Status Register Bits

Bit

Description

\%

SCG1
SCGO

OSCOFF

CPUOFF

GIE

Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

Set when:

Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

ADD(.B) ,ADDC(.B)

Set when:

Positive — Negative = Negative
Negative — Positive = Positive,
otherwise reset

SUB(.B) ,SUBC(.B),CMP(.B)

System clock generator 1. This bit, when set, turns off the SMCLK.

System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPU off. This bit, when set, turns off the CPU.

General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation

is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the
result

N is set to the value of bit 7 of the
result

Byte operation:

Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

3-6 RISC 16-Bit CPU

3.2.4 Constant Generator Registers CG1 and CG2

CPU Registers

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3-2.

Table 3-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 o0 -—---- Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

[No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as

source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR

dst

is emulated by the double-operand instruction with the same length:

MOV

R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC
is replaced by:

ADD

dst

0(R3) ,dst

RISC 16-Bit CPU 3-7

CPU Registers

3.2.5 General-Purpose Registers R4 to R15

The twelve registers, R4 to R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and
can be accessed with byte or word instructions as shown in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
Unused Register Byte Memory
Byte Memory Oh Register
Example Register-Byte Operation Example Byte-Register Operation
R5 = 0A28Fh R5 = 01202h
R6 = 0203h R6 = 0223h
Mem(0203h) = 012h Mem(0223h) = 05Fh
ADD.B RS, 0 (R6) ADD.B @R6, RS
08Fh 05Fh
+012h + 002h
0Ath 00061h
Mem (0203h) = 0A1h R5 = 00061h
C=0,Z=0,N=1 C=0,Z=0,N=0
(Low byte of register) (Addressed byte)
+ (Addressed byte) + (Low byte of register)
—>(Addressed byte) —>(Low byte of register, zero to High byte)

3-8 RISC 16-Bit CPU

3.3 Addressing Modes

Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3-3 describe the contents of the As

(source)

and Ad (destination) mode bits.

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/ Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

11/- Indirect @Rn+ Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note:

Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-9

Addressing Modes

3.3.1 Register Mode

The register mode is described in Table 3-4.

Table 3—-4. Register Mode Description

Assembler Code Content of ROM
MOV R10,R11 MOV R10,R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10,R11
Before: After:

R10 0A023h R10 0A023h
R11 OFA15h R11 0A023h

PC PCOId PC PCold +2

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

3-10 RISC 16-Bit CPU

3.3.2 Indexed Mode

Addressing Modes

The indexed mode is described in Table 3-5.

Table 3-5. Indexed Mode Description

Assembler Code Content of ROM
MOV 2 (R5),6 (R6) MOV X (R5),Y(R6)
X=2
Y=6

Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.
Comment: Valid for source and destination
Example: MOV 2 (R5),6(R6) ;
Before: After:
Address Register Address Register
Space Space
Oxxxxh | PC
OFF16h | 00006h R5| 01080h OFF16h | 00006h R5] 01080h
OFF14h | 00002h R6| 0108Ch OFF14h | 00002h R6| 0108Ch
OFF12h | 04596h | PC OFF12h | 04596h
0108Ch
01094h Oxxxxh +0006h 01094h | Oxxxxh
01092h | 05555h 01092h 91092n [01234h
01090h | Oxxxxh 01090h | Oxxxxh
01080h
01084h | Oxxxxh +0002h 01084h | Oxxxxh
01082h
01082h | 01234h 01082h | 01234h
01080h | Oxxxxh 01080h | Oxxxxh

RISC 16-Bit CPU 3-11

Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3—-6. Symbolic Mode Description

3-12

Assembler Code

Content of ROM

MOV EDE, TONI

MOV X (PC),Y(PC)

X =EDE -PC
Y =TONI - PC

Two or three words

Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC +Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Valid for source and destination

MOV EDE, TONI

Length:
Operation:
Comment:
Example:
Before:
Address
Space
OFF16h 011FEh
OFF14h | OF102h
OFF12h 04090h
OF018h Oxxxxh
0F016h 0A123h
OF014h Oxxxxh
01116h Oxxxxh
01114h | 05555h
01112h Oxxxxh

RISC 16-Bit CPU

;Dest.
Register After:

OFF16h
OFF14h
PC OFF12h

OFF14h
+0F102h O0F018h
OF018h oro16n
0F014h

OFF16h
+011FEh 01116h
01114n 01114h
01112h

;Source address EDE
address TONI=01114h

Address
Space

Oxxxxh

O011FEh

O0F102h

04090h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

PC

3.3.4 Absolute Mode

Addressing Modes

The absolute mode is described in Table 3-7.

Table 3-7. Absolute Mode Description

Assembler Code Content of ROM
MOV &EDE, &TONI MOV X (0),Y(0)
X = EDE
Y = TONI

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the

next instruction.

Valid for source and destination

MOV &EDE, &TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h
Address Register ter Address Register
Space Space
Oxxxxh | PC
01114h OFF16h | 01114h
0F016h OFF14h | OF016h
04292h | PC OFF12h | 04292h
Oxxxxh 0F018h Oxxxxh
0A123h OF016h | 0A123h
Oxxxxh 0F014h Oxxxxh
Oxxxxh 01116h Oxxxxh
01234h 01114h | 0A123h
Oxxxxh 01112h Oxxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

RISC 16-Bit CPU 3-13

Addressing Modes

3.3.5

Table 3-8. Indirect Mode Description

3-14

Indirect Register Mode

The indirect register mode is described in Table 3-8.

Assembler Code

Content of ROM

MOV @R10,0(R11)

MOV @R10,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

RISC 16-Bit CPU

Address
Space
Oxxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV.B @R10,0(R11)

0000h

R10

04AEBh

PC R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

012h

Oxxh

Register

OFA33h

002A7h

ter:

OFF16h
OFF14h
OFF12h

O0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

Address

Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

OFA33h

002A7h

3.3.6 Indirect Autoincrement Mode

Addressing Modes

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code

Content of ROM

MOV @R10+,0(R11)

MOV @R10+,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF18h
OFF16h

OFF14h
OFF12h

O0FA34h
0FA32h
OFA30h

010AAN
010A8h
010A6h

One or two words

Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without

any overhead. This is useful for table processing.

Valid only for source operand. The substitute for destination

operand is O(Rd) plus second instruction INCD Rd.

Address
Space

Oxxxxh

00000h

04ABBh

Oxxxxh

Oxxxxh

05BC1h

O0xxxxh

Oxxxxh

01234h

Oxxxxh

R10
pPC R11

MOV @R10+,0(R11)

Register

0FA32h

010A8h

OFF18h
OFF16h

OFF14h
OFF12h

O0FA34h
O0FA32h
OFA30h

010AAhN
010A8h
010A6h

Address
Space

Oxxxxh

PC

00000h

R10

04ABBh

R11

Oxxxxh

Oxxxxh

05BC1h

0xxxxh

Oxxxxh

05BC1h

Oxxxxh

Register

OFA34h

010A8h

The autoincrementing of the register contents occurs after the operand is

fetched. This is shown in Figure 3-8.

Figure 3-8. Operand Fetch Operation

Instruction

\ 4

Address

Operand

+1/ +2

RISC 16-Bit CPU

Addressing Modes

3.3.7

Table 3-10.Immediate Mode Description

3-16

Immediate Mode

The immediate mode is described in Table 3-10.

Assembler Code

Content of ROM

MOV #45h, TONI

MOV @PC+,X (PC)

X=TONI - PC

45

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

010AAhN
010A8h
010A6h

RISC 16-Bit CPU

Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Valid only for a source operand.

MOV #45h, TONI

Address
Space

01192h

00045h

040BOh

Oxxxxh

01234h

Oxxxxh

Register

PC

OFF16h
+01192h

010A8h

After:

OFF18h
OFF16h

OFF14h
OFF12h

010AAhN
010A8h
010A6h

Address
Space
Oxxxxh

01192h

00045h

040B0Oh

Oxxxxh

00045h

Oxxxxh

Register

PC

Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:
(] Dual-operand

4 Single-operand

d Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:

0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

RISC 16-Bit CPU 3-17

Instruction Set

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

Figure 3-9. Double Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad | BIW As D-Reg

Table 3-11 lists and describes the double operand instructions.

Table 3-11. Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
MOV (.B) src,dst src — dst - - - -
ADD (.B) src,dst src + dst — dst * * * *
ADDC(.B) src,dst src+dst+C — dst * * * *
SUB (.B) src,dst dst+.not.src + 1 — dst * * * *
SUBC(.B) src,dst dst+ .not.src +C — dst * * * *
CMP (.B) src,dst dst-src * * * *
DADD (.B) src,dst src+dst+ C — dst (decimally) * * * *
BIT(.B) src,dst src.and. dst 0 * * *
BIC(.B) src,dst .not.src .and. dst — dst - - - -
BIS(.B) src,dst src.or. dst — dst - - - -
XOR (.B) src,dst src .xor. dst — dst * * * *
AND (.B) src,dst src.and. dst — dst 0 * * *

*

The status bit is affected

— The status bit is not affected
0 The status bit is cleared

1 The status bit is set

)
Note: Instructions cMP and SUB

The instructions cMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

3-18 RISC 16-Bit CPU

3.4.2 Single-Operand (Format Il) Instructions

Figure 3-10 illustrates the single-operand instruction format.

Figure 3-10. Single Operand Instruction Format

Instruction Set

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Op-code B/W Ad D/S-Reg
Table 3-12 lists and describes the single operand instructions.
Table 3-12.Single Operand Instructions
Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
RRC(.B) dst C->MSB —....... LSB - C * * * *
RRA (.B) dst MSB - MSB —....LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, src > @SP - - - -
SWPB dst Swap bytes - - - -
CALL dst SP -2 -5 SP, PC+2 - @SP - - - -
dst - PC
RETI TOS - SR, SP +2 - SP * * * *
TOS - PC,SP +2 - SP
SXT dst Bit 7 — Bit 8........ Bit 15 0 * * *

The status bit is affected

- The status bit is not affected
0 The status bit is cleared
1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address

information.

RISC 16-Bit CPU 3-19

Instruction Set

3.43 Jumps

Figure 3—11 shows the conditional-jump instruction format.

Figure 3—11. Jump Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code C 10-Bit PC Offset

Table 3-13 lists and describes the jump instructions.

Table 3-13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
Jc Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from —-511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCOId +2+ PCoffset X 2

3-20 RISC 16-Bit CPU

* ADC[.W]
*ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.

ADD @R13,0(R12) ; Add LSDs

ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

RISC 16-Bit CPU 3-21

Instruction Set

ADD[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Add source to destination
Add source to destination

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst —> dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setifresult is zero, reset otherwise

C: Setif there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) > 246 [0Ah+0F6h]
...... ; No carry

3-22 RISC 16-Bit CPU

ADDCI[.W]
ADDC.B
Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add source and carry to destination
Add source and carry to destination

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C —> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
; resulting from the LSDs

The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven bytes
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

RISC 16-Bit CPU 3-23

Instruction Set

ANDL[.W] Source AND destination
AND.B Source AND destination
Syntax AND src,dst or AND.W src,dst
AND.B src,dst
Operation src .AND. dst —> dst
Description The source operand and the destination operand are logically ANDed. The

result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Setif result is zero, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.
MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
Jz TONI ;

...... ; Result is not zero

; or
AND #0AA55h, TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.
AND.B #0A5h, TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;

...... ; Result is not zero

3-24 RISC 16-Bit CPU

BIC[.W]
BIC.B

Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Clear bits in destination
Clear bits in destination

BIC src,dst or BIC.W src,dst
BIC.B src,dst

.NOT.src . AND. dst —> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #OFCOO0h,LEO ; Clear 6 MSBs in MEM(LEOQ)
The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

RISC 16-Bit CPU 3-25

Instruction Set

BIS[.W] Set bits in destination
BIS.B Set bits in destination
Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst
Operation src .OR. dst —> dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The six LSBs of the RAM word TOM are set.
BIS #003Fh,TOM; set the six LSBs in RAM location TOM
Example The three MSBs of RAM byte TOM are set.
BIS.B #0EOh,TOM ; set the 3 MSBs in RAM location TOM

3-26 RISC 16-Bit CPU

BIT[.W]
BIT.B

Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Test bits in destination
Test bits in destination

BIT src,dst or BIT.W src,dst
src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Setif MSB of result is set, reset otherwise

Z: Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?

JNZ TOM ; Yes, branch to TOM
; No, proceed

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8

JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.

Serial communication with LSB is shifted first:
TXXXX OXXXX XXXX XXXX

BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry —> MSB of RECBUF
; CXXX XXXX
...... ; repeat previous two instructions
...... ; 8 times
; CCCC ccece
; N N
; MSB LSB
; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry —> LSB of RECBUF
7 XXXX XXXC
...... ; repeat previous two instructions
...... ; 8 times
; cCcC ccee
i LSB
; MSB

RISC 16-Bit CPU 3-27

Instruction Set

*BR, BRANCH Branch to destination

Syntax BR dst

Operation dst —> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address

space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)

: Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5
BR @R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5+,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

3-28 RISC 16-Bit CPU

CALL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Subroutine

CALL dst

dst —>tmp dst is evaluated and stored
SP-2 —> SP

PC -> @SP PC updated to TOS

tmp -> PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

CALL

CALL

#EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP-2 —» SP, PC+2 —» @SP, @PC+ — PC

EXEC ; Call on the address contained in EXEC
; SP-2 —» SP, PC+2 —» @SP, X(PC) —» PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 — SP, PC+2 — @SP, X(0) - PC
; Indirect address

R5 ; Call on the address contained in R5
; SP-2 - SP, PC+2 - @SP, R5 —» PC
; Indirect R5
@R5 ; Call on the address contained in the word

; pointed to by R5
: SP-2 - SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5

@R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 — SP, PC+2 —» @SP, @R5 —» PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 — SP, PC+2 — @SP, X(R5) —» PC
; Indirect, indirect R5 + X

RISC 16-Bit CPU 3-29

Instruction Set

* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —> dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ; 0 —> TONI
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR.B TONI ; 0 —> TONI

3-30 RISC 16-Bit CPU

*CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Clear carry bit

CLRC

0—>C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

RISC 16-Bit CPU 3-31

Instruction Set

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0—>N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

3-32 RISC 16-Bit CPU

* CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Clear zero bit
CLRZ

0527
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.

CLRZ

RISC 16-Bit CPU 3-33

Instruction Set

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source and destination
Compare source and destination

CMP src,dst or CMP.W src,dst
CMP.B src,dst

dst + .NOT.src + 1

or

(dst - src)

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)

Z: Setif result is zero, reset otherwise (src = dst)

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R67?
JEQ EQUAL ; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

3-34 RISC 16-Bit CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSBis 1

Z: Set if dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ;Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ;Add LSDs + C
DADC.B 1(R8) ; Add carry to MSDs

RISC 16-Bit CPU 3-35

Instruction Set

DADDI[.W]
DADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source and carry added decimally to destination
Source and carry added decimally to destination

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C —> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Set if the MSB is 1, reset otherwise
Z: Setif result is zero, reset otherwise
C: Setif the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry

DADD R5,R3 ; add LSDs

DADD R6,R4 ; add MSDs with carry

JC OVERFLOW ; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; Clear carry

DADD.B #1,CNT ; increment decimal counter
or

SETC

DADD.B #0,CNT :=DADC.B CNT

3-36 RISC 16-Bit CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Decrement destination
Decrement destination

DEC dst or DEC.W dst
DEC.B dst
dst — 1 —> dst

SuB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

Set if result is negative, reset if positive

Set if dst contained 1, reset otherwise

Reset if dst contained 0, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 : Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

; to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3—12.

Figure 3-12. Decrement Overlap

EDE
4+—
TONI
EDE+254
TONI+254

RISC 16-Bit CPU 3-37

Instruction Set

* DECD[.W] Double-decrement destination
*DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst
DECD.B dst
Operation dst — 2 —> dst
Emulation SUB #2,dst
Emulation SUB.B #2,dst
Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.
DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the

; range EDE to EDE+OFEh

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1
Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

3-38 RISC 16-Bit CPU

* DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Instruction Set

Disable (general) interrupts
DINT

0—- GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

RISC 16-Bit CPU 3-39

Instruction Set
* EINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Enable (general) interrupts
EINT

1 - GIE
or
(0008h .OR. SR —> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

)

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

3-40 RISC 16-Bit CPU

* INC[.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMPB #11,STATUS
JEQ OVFL

RISC 16-Bit CPU 3-41

Instruction Set

*INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

3-42 RISC 16-Bit CPU

* INV[.W]
* INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #OFFFFh,dst
XOR.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5is now negated, = R5 = 0OFF52h

Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO : Invert LEO, MEM(LEO) = 051h
INC.B LEO : MEM(LEO) is negated, MEM(LEO) = 052h

RISC 16-Bit CPU 3-43

Instruction Set
JC

JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC label
JHS label

If C=1: PC + 2 x offset —> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.
The P1IN.1 signal is used to define or control the program flow.

BIT.B #02h,&P1IN ; State of signal —> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 > 15
...... ; Continue here if R5 < 15

3-44 RISC 16-Bit CPU

JEQ, JZ
Syntax

Operation

Description

Status Bits

Example

Example

Example

Instruction Set
Jump if equal, jump if zero
JEQ label, JZ label

IfZ=1: PC + 2 x offset —> PC
If Z = 0: execute following instruction

The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal

...... ; No, data are not equal, continue here

Branch to LABEL if R5 is 0.

TST R5
Jz LABEL

RISC 16-Bit CPU 3-45

Instruction Set

JGE
Syntax

Operation

Description

Status Bits

Example

Jump if greater or equal
JGE label

If (N .XOR. V) =0 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 > (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 > (R7)
...... ; No, proceed

3-46 RISC 16-Bit CPU

JL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if less
JL label

If (N .XOR. V) =1 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed

RISC 16-Bit CPU 3-47

Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 x offset —> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the

program counter.
Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current program counter.

3-48 RISC 16-Bit CPU

JN
Syntax

Operation

Description

Status Bits

Example

L$1

Instruction Set
Jump if negative
JN label

if N=1: PC + 2 x offset —> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT - R5 —> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT=0

RISC 16-Bit CPU 3-49

Instruction Set

JNC
JLO

Syntax

Operation

Description

Status Bits

Example

ERROR

CONT

Example

Jump if carry not set
Jump if lower

JNC label
JLO label

if C =0: PC + 2 x offset —> PC
if C = 1: execute following instruction

The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 —> BUFFER
JNC CONT ; No carry, jump to CONT
...... ; Error handler start

...... ; Continue with normal program flow

Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 : STATUS < 2
...... : STATUS > 2, continue here

3-50 RISC 16-Bit CPU

JNE

JNZ

Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if not equal
Jump if not zero

JNE label
JNZ label

If Z=0: PC + 2 x offset —> PC
If Z = 1: execute following instruction

The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

RISC 16-Bit CPU 3-51

Instruction Set
MOV[.W]
MOV.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

MOV src,dst or MOV.W src,dst
MOV.B src,dst
src —> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue copying
...... ; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for

; both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue
; copying

...... ; Copying completed

3-52 RISC 16-Bit CPU

*NOP
Syntax
Operation
Emulation

Description

Status Bits

Instruction Set

No operation
NOP

None

MOV #0, R3

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

[Tofill one, two, or three memory words
(d To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

RISC 16-Bit CPU 3-53

Instruction Set

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP —>temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 =20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

3-54 RISC 16-Bit CPU

PUSH[.W]
PUSH.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Push word onto stack
Push byte onto stack

PUSH src or PUSHW src
PUSH.B src

SP-2-SP
src - @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

RISC 16-Bit CPU 3-55

Instruction Set

*RET Return from subroutine
Syntax RET
Operation @SP— PC
SP+2 > SP
Emulation MOV @SP+,PC
Description The return address pushed onto the stack by a CALL instruction is moved to

the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

3-56 RISC 16-Bit CPU

RETI
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Instruction Set

Return from interrupt

RETI

TOS — SR
SP +2 — SP
TOS — PC
SP +2 — SP

The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

N:
Z:
C:
V:

restored from system stack
restored from system stack
restored from system stack
restored from system stack

OSCOFF, CPUOFF, and GIE are restored from system stack.

Figure 3-13 illustrates the main program interrupt.

Figure 3-13. Main Program Interrupt

PC —6 000
PC -4
Interrupt Request
PC -2 /
PC Interrupt Accepted
PC +2 PC+2 is Stored PC = PCi PYY)
Onto Stack
PC +4
PC +6
PC +8 o
[]
[]
RETI

RISC 16-Bit CPU

3-57

Instruction Set

* RLAL.W]
* RLA.B

Syntax

Operation

Emulation

Description

Rotate left arithmetically
Rotate left arithmetically

RLA dst or RLA.W dst
RLA.B dst

C <— MSB <- MSB-1 LSB+1 <-LSB<-0

ADD dst,dst
ADD.B dst,dst

The destination operand is shifted left one position as shown in Figure 3-14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3-14. Destination Operand—Arithmetic Shift Left

Status Bits

Mode Bits

Example

Example

Word 15 0
__________________ o
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)
The low byte of R7 is multiplied by 4.

RLA.B R7 Shift left low byte of R7 (x 2)
RLA.B R7 Shift left low byte of R7 (x 4)

' Note: RLA Substitution
The assembler does not recognize the instruction:
RLA @RS5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

3-58 RISC 16-Bit CPU

* RLC[.W]
* RLC.B

Syntax

Operation
Emulation

Description

Instruction Set

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C <- MSB <- MSB-1 LSB+1<-LSB<-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 3—15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3-15. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted left one position.

RLC R5 ;(R5x2)+C->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO : Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5
It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

RISC 16-Bit CPU 3-59

Instruction Set

RRA[W]
RRA.B

Syntax

Operation

Description

Rotate right arithmetically
Rotate right arithmetically

RRA dst or RRA.W dst
RRA.B dst

MSB -> MSB, MSB —> MSB-1, ... LSB+1 ->LSB, LSB->C

The destination operand is shifted right one position as shown in Figure 3-16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB-1, and the
LSB+1 is shifted into the LSB.

Figure 3-16. Destination Operand—Arithmetic Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
S — >
Byte J
15 0

Set if result is negative, reset if positive
Set if result is zero, reset otherwise
Loaded from the LSB

Reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 —> R5

The value in R5 is multiplied by 0.75 (0.5 + 0.25).

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 :R5x0.5 —> R5

ADD @SP+,R5 ;R5x05+R5=15%xR5 —>R5
RRA R5 ;(1.5xR5)x0.5=0.75xR5 —>R5

The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 —> R5: operation is on low byte only
; High byte of R5 is reset
PUSH.B R5 ;R5x0.5 —> TOS
RRA.B @SP ; TOSx05=05%xR5x05=0.25xR5 —>TOS
ADD.B @SP+,R5 ;R5x0.5+R5x%x0.25=0.75xR5 —>R5

3-60 RISC 16-Bit CPU

RRC[.W]
RRC.B

Syntax

Operation

Description

Instruction Set

Rotate right through carry
Rotate right through carry

RRC dst or RRC.W dst
RRC dst

C —->MSB —> MSB-1 LSB+1 —>LSB —>C

The destination operand is shifted right one position as shown in Figure 3-17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3—17. Destination Operand—Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
——————————————————
Byte 7 0

N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h —> R5

R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h —> R5; low byte of R5 is used

RISC 16-Bit CPU 3-61

Instruction Set

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

I
Note: Borrow Implementation.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

3-62 RISC 16-Bit CPU

*SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Instruction Set

Set carry bit

SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6—-0Fh
; R5 =03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
;R6=R6+R5+1
; R6 = 0150h

RISC 16-Bit CPU 3-63

Instruction Set

*SETN
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set negative bit

SETN

1->N

BIS #4,SR

The negative bit (N) is set.

N: Set

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

3-64 RISC 16-Bit CPU

Instruction Set

* SETZ Set zero bit
Syntax SETZ
Operation 1->Z
Emulation BIS #2,SR
Description The zero bit (2) is set.
Status Bits N: Not affected

Z: Set

C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

RISC 16-Bit CPU 3-65

Instruction Set

SUB[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SuB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 —> dst
or

[(dst — src —> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example See example at the SBC instruction.
Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-66 RISC 16-Bit CPU

SUBC[.W]SBB[.W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C —> dst
or
(dst—src — 1 + C —> dst)

The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.

Z: Setif result is zero, reset otherwise.

C: Setifthere is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUBW R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

RISC 16-Bit CPU 3-67

Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15t0 8 <—> bits 7t0 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3-18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 —> R7

SWPB R7 ; 1011111101000000 in R7
Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;

MOV R5,R4 ;Copy the swapped value to R4

BIC #0FFOOh,R5 ;Correct the result

BIC #00FFh,R4 ;:Correct the result

3-68 RISC 16-Bit CPU

SXT

Syntax
Operation
Description

Status Bits

Mode Bits

Instruction Set

Extend Sign

SXT dst

Bit7 —> Bit 8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figure 3-19.

N: Set if result is negative, reset if positive

Z: Setif resultis zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—19. Destination Operand Sign Extension

Example

15 8 7 0

R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h:1000 0000
SXT R7 ; R7 = OFF80h: 1111 1111 1000 0000

RISC 16-Bit CPU 3-69

Instruction Set

*TSTL.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

Jz R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

3-70 RISC 16-Bit CPU

XOR[.W]
XOR.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR src,dst or XOR.W src,dst
XOR.B src,dst

src .XOR. dst —> dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set

Z: Setifresult is zero, reset otherwise

C: Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6
The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is Oh

RISC 16-Bit CPU 3-71

Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14. Interrupt and Reset Cycles

No. of Length of
Action Cycles Instruction
Return from interrupt (RETTI) 5 1

Interrupt accepted 6
WDT reset 4 -
Reset (RST/NMI) 4

Format-ll (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of
format-Il instructions.

Table 3—-15. Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing RRA, RRC Length of

Mode SWPB, SXT PUSH CALL Instruction Example
Rn 1 3 4 1 SWPB R5
@Rn 3 4 4 1 RRC @R9
@Rn+ 3 5 5 1 SWPB @R10+
#N (See note) 4 5 2 CALL #0F000h
X(Rn) 4 5 5 2 CALL 2(R7)
EDE 4 5 5 2 PUSH EDE
&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format Il Inmediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-lll (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

3-72 RISC 16-Bit CPU

Format-l (Double Operand) Instruction Cycles and Lengths

Instruction Set

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I

instructions.

Table 3-16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 1 MOV R5,R8
PC 2 1 BR R9
x(Rm) 4 2 ADD R5,4 (R6)
EDE 4 2 XOR R8,EDE
&EDE 4 2 MOV R5, &EDE
@Rn Rm 2 1 AND @R4,R5
PC 2 1 BR @R8
x(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R5,EDE
&EDE 5 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+,R6
PC 3 1 BR @R9+
X(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R9+, EDE
&EDE 5 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20,R9
PC 3 2 BR #2AEh
x(Rm) 5 3 MOV #0300h, 0 (SP)
EDE 5 3 ADD #33,EDE
&EDE 5 3 ADD #33, &EDE
x(Rn) Rm 3 2 MOV 2(R5),R7
PC 3 2 BR 2 (R6)
TONI 6 3 MOV 4 (R7),TONI
x(Rm) 6 3 ADD 4 (R4),6(R9)
&TONI 6 3 MOV 2 (R4) , &TONI
EDE Rm 3 2 AND EDE,R6
PC 3 2 BR EDE
TONI 6 3 CMP EDE, TONI
x(Rm) 6 3 MOV EDE, 0 (SP)
&TONI 6 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE, R8
PC 3 2 BR &EDE
TONI 6 3 MOV &EDE, TONI
x(Rm) 6 3 MOV &EDE, 0 (SP)
&TONI 6 3 MOV &EDE, &TONT

RISC 16-Bit CPU 3-73

Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3—-20 and the complete instruction set
is summarized in Table 3-17.

Figure 3-20. Core Instruction Map

000 040 080 0OCO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

(09704

4xxx

8XxX

Cxxx

1xxx | RRC |RRC.B | swPB RRA | RRAB| SXT PUSH |PUSH.B| CALL RETI
14xx

18xx

1Cxx

20xx JNE/JNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xxx MOV, MOV.B
BXXX ADD, ADD.B
BXXX ADDC, ADDC.B
TXXX SUBC, SUBC.B
8xxx SUB, SUB.B
9XXX CMP, CMP.B
AXXX DADD, DADD.B
Bxxx BIT, BIT.B

Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

3-74 RISC 16-Bit CPU

Table 3—17.MSP430 Instruction Set

Instruction Set

Mnemonic Description Vv N z C
apc(.B)t dast Add C to destination dst + C — dst * * * *
ADD(.B) src,dst Add source to destination src + dst — dst * * * *
ADDC (.B) src,dst Add source and C to destination src + dst + C — dst * * * *
AND (.B) src,dst AND source and destination src .and. dst — dst 0 * * *
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst - - - -
BIS(.B) src,dst Set bits in destination src .or. dst — dst - - - -
BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *
Brt dst Branch to destination dst — PC - - - -
CALL dst Call destination PC+2 — stack, dst - PC - - - -
ctr(.B)t dst Clear destination 0 — dst - - - -
cLret Clear C 0-C - - - 0
cLrit Clear N 0—N - 0 - -
cLrzt Clear Z 052 - - 0 -
CMP (.B) src,dst Compare source and destination dst — src * * * *
papc(.B)T dst Add C decimally to destination dst + C — dst (decimally) * * * *
DADD (.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) * * * *
pEC(.B)t dst Decrement destination dst-1 — dst * * * *
DECD(.B)T dst Double-decrement destination dst -2 — dst * * * *
pINTt Disable interrupts 0-GIE - - - -
EINTT Enable interrupts 1> GIE - - - -
inc(.B) T dst Increment destination dst +1 — dst * * * *
Nep (.B)T dst Double-increment destination dst+2 — dst * * * *
mwwv(.B)t dst Invert destination .not.dst — dst * * * *
Jc/JHs label Jump if C set/Jump if higher or same - - - -
JEQ/JZ label Jump if equal/dJump if Z set - - - -
JGE label Jump if greater or equal - - - -
JL label Jump if less - - - -
JMP label Jump PC + 2 x offset - PC - - - -
JN label Jump if N set - - - -
JNC/JLO label Jump if C not set/Jump if lower - - - -
JNE/JNZ label Jump if not equal/Jump if Z not set - - - -
MOV (.B) src,dst Move source to destination src — dst - - - -
nNopt No operation - - - -
pop(.B)T dst Pop item from stack to destination @SP — dst, SP+2 — SP - - - -
PUSH (.B) src Push source onto stack SP -2 — SP, src -» @SP - - - -
RETT Return from subroutine @SP —» PC,SP +2 —» SP - - - -
RETI Return from interrupt * * * *
RLA(.B)T dst Rotate left arithmetically * * * *
rRLC(.B)T dst Rotate left through C * * * *
RRA(.B) dst Rotate right arithmetically 0 * * *
RRC(.B) dst Rotate right through C * * * *
sec(.B)t dst Subtract not(C) from destination dst + OFFFFh + C — dst * * * *
serct SetC 1-C - - - 1
seTNT SetN 15N - 1 - -
serzt SetZ 1-C - - 1 -
SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 — dst * * * *
SUBC (.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TsT(.B) T dst Test destination dst + OFFFFh + 1 0 * * 1
XOR (.B) src,dst Exclusive OR source and destination src .xor. dst — dst * * * *

1 Emulated Instruction

RISC 16-Bit CPU 3-75

3-76 RISC 16-Bit CPU

Chapter 4

16-Bit MSP430X CPU

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB
memory access, its addressing modes, and instruction set. The MSP430X
CPU is implemented in all MSP430 devices that exceed 64-KB of address
space.

Topic Page
41 CPUlIntroductioncciiiiiiiiiinnnrrnnnnnnnnnnnnnns 4-2
42 Interruptsccciiiiiiiiiii it et e e e aanas 4-4
() (HU[REFSER 00000000000000000000000000003000000300000000000C 4-5
44 AddressingModesiiiiiiiii i i 4-14
4.5 MSP430 and MSP430X Instructionsccoiiiiiinn... 4-35
4.6 Instruction Set Descriptionccciiiiiiiiiiiiiiiannn 4-57

4-1

CPU Introduction

4.1 CPU Introduction

4-2

The MSP430X CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The MSP430X CPU can address
a 1-MB address range without paging. In addition, the MSP430X CPU has
fewer interrupt overhead cycles and fewer instruction cycles in some cases
than the MSP430 CPU, while maintaining the same or better code density than
the MSP430 CPU. The MSP430X CPU is completely backwards compatible
with the MSP430 CPU.

The MSP430X CPU features include:

J
a

a
-

RISC architecture.
Orthogonal architecture.

Full register access including program counter, status register and stack
pointer.

Single-cycle register operations.
Large register file reduces fetches to memory.

20-bit address bus allows direct access and branching throughout the
entire memory range without paging.

16-bit data bus allows direct manipulation of word-wide arguments.

Constant generator provides the six most often used immediate values
and reduces code size.

Direct memory-to-memory transfers without intermediate register holding.

Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4-1.

16-Bit MSP430X CPU

Figure 4-1. MSP430X CPU Block Diagram

16

MDB - Memory Data Bus

19 16 15

Memory Address Bus - MAB

o

RO/PC Program Counter 0

T

R1/SP Pointer Stack 0

|

R2/SR Status Register

<:(> R3/CG2 Constant Generator :>
[| [|
<::l'> R4 General Purpose :>
1 1
<):1/’\ R5 General Purpose :>
[| [|
<::1/'\ R6 General Purpose :>
T T
<):1/'\ R7 General Purpose :>
[| [|
<::’1> R8 General Purpose :>
[| [|
<):1/'\ R9 General Purpose :>
[| [|
<)::> R10 General Purpose :>
[| [|
<):’l> R11 General Purpose :>
1 1
<::1/'\ R12 General Purpose :>
[| [|
<):’l> R13 General Purpose :>
1 1
<):1/'\ R14 General Purpose :>
1 1
<::l'> R15 General Purpose :>
Ny Y 20
Zero, Z dst src L
Carry, C .
Overflow,V 16/20-bit ALU MCLK
Negative,N
/l
N\
N

CPU Introduction

16-Bit MSP430X CPU

4-3

Interrupts

4.2 Interrupts
The MSP430X uses the same interrupt structure as the MSP430:
(O Vectored interrupts with no polling necessary
(1 Interrupt vectors are located downward from address OFFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in
Chapter 2 System Resets, Interrupts, and Operating modes, Section 2
Interrupts. The interrupt vectors contain 16-bit addresses that point into the
lower 64-KB memory. This means all interrupt handlers must start in the lower
64-KB memory — even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed
onto the stack as shown in Figure 4-2. The MSP430X architecture efficiently
stores the complete 20-bit PC value by automatically appending the PC bits
19:16 to the stored SR value on the stack. When the RETTI instruction is
executed, the full 20-bit PC is restored making return from interrupt to any
address in the memory range possible.

Figure 4-2. Program Counter Storage on the Stack for Interrupts

SPoiq —W Iltem n-1
PC.15:0
SP —» PC.19:16 SR.11:0

4-4 16-Bit MSP430X CPU

CPU Registers

4.3 CPU Registers

The CPU incorporates sixteen registers RO to R15. Registers RO, R1, R2, and
R3 have dedicated functions. R4 to R15 are working registers for general use.

4.3.1 Program Counter PC

The 20-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, six or
eight bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses.
Figure 4-3 shows the program counter.

Figure 4-3. Program Counter PC
19 16 15 1.0

Program Counter Bits 19 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV.W #LABEL,PC ; Branch to address LABEL (lower 64 KB)
MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only
addresses in the lower 64-KB address range can be reached with the BR or
CALL instruction. When branching or calling, addresses beyond the lower
64-KB range can only be reached using the BRA or CALLA instructions. Also,
any instruction to directly modify the PC does so according to the used
addressing mode. For example, MOV .W #value, PC will clear the upper four
bits of the PC because it is a . w instruction.

16-Bit MSP430X CPU 4-5

CPU Registers

The program counter is automatically stored on the stack with CALL, or CALLA
instructions, and during an interrupt service routine. Figure 4—4 shows the
storage of the program counter with the return address after a CALLA
instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 4-4. Program Counter Storage on the Stack for CALLA

SPolq —¥

ltemn

[pc.19:16

SP —»

PC.15:0

The RETA instruction restores bits 19:0 of the program counter and adds 4 to
the stack pointer. The RET instruction restores bits 15:0 to the program

counter and adds 2 to the stack pointer.

4-6 16-Bit MSP430X CPU

CPU Registers

4.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return
addresses of subroutine calls and interrupts. It uses a predecrement,
postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when
20-bit address-words are pushed.

Figure 4-5. Stack Pointer

19 10
Stack Pointer Bits 19 to 1 0
MOV.W 2 (SP),R6 ; Copy Item I2 to R6
MOV.W R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h on stack
POP R8 ; R8 = 0123h

Figure 4-6. Stack Usage

Address PUSH #0123h POP R8

Oxxxh I 1 I

Oxxxh — 2 12 12 12

Oxxxh — 4 I3 <¢— SP 13 13 <— SP
Oxxxh — 6 0123h &¢— SP

Oxxxh — 8

Figure 4-7. PUSHX.A Format on the Stack

SPoig —® Item n-1

ltem.19:16

SP —p Item.15:0

16-Bit MSP430X CPU 4-7

CPU Registers

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 4-8.

Figure 4-8. PUSH SP - POP SP Sequence

PUSH SP

SPoig —W

SP1 — SP1

The stack pointer is changed after
a PUSH SP instruction.

4-8 16-Bit MSP430X CPU

POP SP

SP, —»

SP,

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

4.3.3 Status Register (SR)

CPU Registers

The 16-bit status register (SR/R2), used as a source or destination register,
can only be used in register mode addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values
to the SR. Unpredictable operation can result.

Figure 4-9. Status Register Bits

15

OSC|CPU

Reserved V | SCG1 | SCGO OFF |loFF

GIE|N|Z|C

rw-0

Table 4-1 describes the status register bits.

Table 4-1. Description of Status Register Bits

Bit Description

Reserved Reserved

\Y Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.
ADD(.B), ADDX(.B, .A), Set when:
ADDC(.B), ADDCX(.B.A), positive + positive = negative
ADDA negative + negative = positive

otherwise reset

SUB(.B), SUBX(.B, .A), Set when:
SUBC(.B) ,SUBCX(.B, .A), positive - negative = negative
SUBA, CMP(.B), negative — positive = positive
CMPX (.B, .A), CMPA otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc
generator if DCOCLK is not used for MCLK or SMCLK.

SCGO0 System clock generator 0. This bit, when set, turns off the FLL+ loop
control.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator
when LFXT1CLK is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable inter-
rupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of an operation is negative
and cleared when the result is positive.

4 Zero bit. This bit is set when the result of an operation is zero and
cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a

carry and cleared when no carry occurred.

16-Bit MSP430X CPU 4-9

CPU Registers

4.3.4 The Constant Generator Registers CG1 and CG2

Six commonly used constants are generated with the constant generator
registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word
of program code. The constants are selected with the source register
addressing modes (As), as described in Table 4-2.

Table 4-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

[No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

4-10

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:

ADD 0(R3) ,dst

16-Bit MSP430X CPU

CPU Registers

4.3.5 General-Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any
byte-write to a CPU register clears bits 19:8. Any word-write to a register clears
bits 19:16. The only exception is the SXT instruction. The SXT instruction
extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data.
Note the reset of the leading MSBs, if a register is the destination of a byte or
word instruction.

Figure 4—-10 shows byte handling (8-bit data, .B suffix). The handling is shown
for a source register and a destination memory byte and for a source memory
byte and a destination register.

Figure 4-10. Register-Byte/Byte-Register Operation

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
19 16 15 87 0
U 1 Unused Register Memo

used ¢ v

19 16 15 87 0
Memo Un- 1 nused Register

v used 9
(Operation) Operation ’

Memory 0 0 Register

16-Bit MSP430X CPU 4-11

CPU Registers

Figure 4—11 and Figure 4-12 show 16-bit word handling (\W suffix). The
handling is shown for a source register and a destination memory word and
for a source memory word and a destination register.

Figure 4—-11. Register-Word Operation
Register-Word Operation

High Byte Low Byte
19 16 15 87 0

Un-
used

Register

Memory

A

(Operation)

Memory

Figure 4-12. Word-Register Operation
Word-Register Operation

High Byte Low Byte

Memory
19 16 15 8|7 0
Un- .
used Register
A
(Operation)
A
0 Register

4-12 16-Bit MSP430X CPU

CPU Registers

Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix).
The handling is shown for a source register and a destination memory
address-word and for a source memory address-word and a destination

register.

Figure 4-13. Register — Address-Word Operation
Register — Address-Word Operation

High Byte Low Byte
19 16 15 87 0

Register

Memory +2 Unused Memory

A 4 N

(Operation)

Memory +2 0 Memory

Figure 4-14. Address-Word — Register Operation
Address-Word — Register Operation

High Byte Low Byte
19 16 15 87 0

Memory +2 Unused Memory

Register

y A 4

(Operation)

Register

16-Bit MSP430X CPU

4-13

CPU Registers

4.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand use 16-bit or 20-bit addresses. The MSP430 and
MSP430X instructions are usable throughout the entire 1-MB memory range.

Table 4-3. Source/Destination Addressing

As/Ad
00/0
01/1

Addressing Mode Syntax Description

Register mode Rn
X(Rn)

Register contents are operand

Indexed mode (Rn + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the

next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(PC) is

used.

011 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(SR) is

used.

10/- @Rn

1/-

11/-

Indirect register
mode

Indirect @Rn+

autoincrement

Immediate mode #N

Rn is used as a pointer to the
operand.

Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions.
by 2 for .W instructions, and by 4
for .A instructions.

N is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indirect autoincrement
mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

4-14 16-Bit MSP430X CPU

CPU Registers

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU

register.
Length: One, two, or three words
Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register
Rsrc and writes the result to the 8 LSBs of the destination
register Rdst. The bits Rdst.19:8 are cleared. The register
Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc
and writes the result to the 16 LSBs of the destination register
Rdst. The bits Rdst.19:16 are cleared. The register Rsrc is not
modified.

Address-Word operation: Address-word operation reads the 20 bits of the
source register Rsrc and writes the result to the 20 bits of the
destination register Rdst. The register Rsrc is not modified

SXT Exception: The SXT instruction is the only exception for register
operation. The sign of the low byte in bit 7 is extended to the
bits Rdst.19:8.

Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Before: After:
Address Register Address Register
Space Space
21036h xxxxh R5| AA550h 21036h xxxxh PC R5| AA550h
21034h| D506h PC R6| 11111h 21034h | D506h R6| 0B551h

A550h.or.1111h = B551h

16-Bit MSP430X CPU 4-15

CPU Registers

4-16

Example:

BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit

contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word
uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

Before:
Address

Space

21036h xxxxh

21034h| D546h

21032h| 1800h

16-Bit MSP430X CPU

PC

After:
Register Address
Space
R5| AA550h 21036h xxxxh
R6| 11111h 21034h| D546h
21032h| 1800h

AA550h.or.11111h = BB551h

PC R5
R6

Register

AA550h
BB551h

CPU Registers

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed
index to a CPU register. The Indexed mode has three addressing possibilities:

[Indexed mode in lower 64-KB memory

[MSP430 instruction with Indexed mode addressing memory above the
lower 64-KB memory.

[MSP430X instruction with Indexed mode

Indexed Mode in Lower 64 KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory
range, the calculated memory address bits 19:16 are cleared after the addition
of the CPU register Rn and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow
or underflow out of the lower 64-KB memory space. The RAM and the
peripheral registers can be accessed this way and existing MSP430 software
is usable without modifications as shown in Figure 4-15.

Figure 4-15. Indexed Mode in Lower 64 KB

Lower 64 KB.
Rn.19:16 =0
=t 19 16 15 0
CPU Register
0
Rn
S 16-bitbyte index | 160t
signed index
10000
OFFFF
m o
i‘r (16-bit signed add)
Rn.19:0 —» <
[
=
(o)
-
00000 0 Memory address
Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the

instruction and is added to the CPU register Rn. The resulting
bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range
00000h to OFFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

16-Bit MSP430X CPU 4-17

CPU Registers

4-18

Example: ADD.B 1000h(R5),0F000h(R6) ;

The previous instruction adds the 8-bit data contained in source byte
1000h(R5) and the destination byte OFO00h(R6) and places the result into the
destination byte. Source and destination bytes are both located in the lower
64 KB due to the cleared bits 19:16 of registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch
+ 1000h = 0579Ch after truncation to a 16-bit address.

Destination: The byte pointed to by R6 + FOOOh results in address 01778h
+ FOOOh = 00778 after truncation to a 16-bit address.

Before: After:
Address Register Address Register
Space Space
1103Ah Xxxxh R5| 0479Ch 1103Ah Xxxxh PC R5| 0479Ch
11038h FOOOh R6| 01778h 11038h FO0Oh R6| 01778h
11036h 1000h 11036h 1000h
11034h 55D6h | PC 11034h 55D6h
01778h 32h src
0077Ah Xxxxh +F000h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h - Sum
0479Ch
0579Eh xxxxh +1000h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU

MSP430 Instruction with Indexed Mode in Upper Memory

CPU Registers

If the CPU register Rn points to an address above the lower 64-KB memory,
the Rn bits 19:16 are used for the address calculation of the operand. The
operand may be located in memory in the range Rn £32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can
overflow or underflow into the lower 64-KB memory space. See Figure 4-16
and Figure 4-17.

Figure 4-16. Indexed Mode in Upper Memory

Upper Memory
Rn.19:16 > 0
~ FFFFF
Rn.19:0—»] Rn +32 KB
10000
OFFFF
00000

Lower 64 KB

19

16 15

.. 15

S 16-bit byte index

A 4

20-bit signed add

Figure 4-17. Overflow and Underflow for the Indexed Mode

* FFFFF

10000

+32KB

0,FFFF

Rn.19:0 ¥

0000C

_____ Mu&\\\\&

Lower 64 KB

CPU Register
Rn

16-bit signed index
(sign extended to
20 bits)

Memory address

AN,
NN\

Rn.19:0

A 4

+32KB

NN

16-Bit MSP430X CPU

4-19

CPU Registers

Length:

Operation:

Comment:

Example:

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the CPU register Rn. This
delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the
addressed memory location.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the
destination addresses and places the 16-bit result into the destination. Source
and destination operand can be located in the entire address range.

Source:

Destination:

The word pointed to by R5 + 8346h. The negative index
8346h is sign-extended, which results in address 23456h +
F8346h = 1B79Ch.

The word pointed to by R6 + 2100h results in address
15678h + 2100h = 17778h.

Figure 4-18. Example for the Indexed Mode

Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 23456h 1103Ah xxxxh PC R5| 23456h
11038h 2100h R6| 15678h 11038h 2100h R6| 15678h
11036h 8346h 11036h 8346h
11034h 5596h | PC 11034h 5596h
15678h 05432h src
1777Ah xxxxh +02100h 1777Ah xxxxh +02345h dst
17778h | 2345h 17778h 177780 | 77770 | 07777 Sum
23456h
1B79Eh XxXxxh +F8346h 1B79Eh xxxxh
1B79Ch | 5432h 1B79Ch ig7och | s432h

4-20 16-Bit MSP430X CPU

CPU Registers

MSP430X Instruction with Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be
located anywhere in the range of Rn + 19 bits.

Length:

Operation:

Comment:

Example:

Three or four words

The operand address is the sum of the 20-bit CPU register
content and the 20-bit index. The four MSBs of the index are
contained in the extension word, the 16 LSBs are contained
in the word following the instruction. The CPU register is not
modified.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the
destination addresses and places the result into the destination.

Source:

Destination:

Two words pointed to by R5 + 12346h which results in
address 23456h + 12346h = 3579Ch.

Two words pointed to by R6 + 32100h which results in
address 45678h + 32100h = 77778h.

16-Bit MSP430X CPU 4-21

CPU Registers

The extension word contains the MSBs of the source index and of the
destination index and the A/L-bit for 20-bit data. The instruction word uses byte
mode due to the 20-bit data length with bits A/L:B/W = 01.

Before: After:
Address Register Address Register
Space Space
2103Ah xxxxh R5| 23456h 2103Ah xxxxh PC R5| 23456h
21038h 2100h R6| 45678h 21038h 2100h R6| 45678h
21036h 2346h 21036h 2346h
21034h 55D6h 21034h 55D6h
21032h 1883h | PC 21032h 1883h
45678h 65432h src
7777Ah 0001h +32100h 7777Ah 0007h +12345h _ dst
77778h | 2345h 77778h 77778h | 7777h 77777h - Sum
23456h
3579Eh 0006h +12346h 3579Eh 0006h
3579Ch
3579Ch 5432h 3579Ch 5432h

4-22 16-Bit MSP430X CPU

CPU Registers

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the
signed index to the program counter. The Symbolic mode has three
addressing possibilities:

(1 Symbolic mode in lower 64-KB memory

[MSP430 instruction with symbolic mode addressing memory above the
lower 64-KB memory.

[MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the
calculated memory address bits 19:16 are cleared after the addition of the PC
and the signed 16-bit index. This means, the calculated memory address is
always located in the lower 64 KB and does not overflow or underflow out of
the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without
modifications as shown in Figure 4-15.

Figure 4-19. Symbolic Mode Running in Lower 64 KB

Lower 64 KB.
PC.19:16=0
— 19 16 15 0
FFFFF
0 Program
counter PC
S 16-bitbyte index | 16-bitsigned
PC index
__ 10000
OFFFF x
1s]
fr (16-bit signed add)
PC.19:0 —» ©
o
H
5]
-
00000 & 0 Memory address

Operation: The signed 16-bit index in the next word after the instruction is
added temporarily to the PC. The resulting bits 19:16 are cleared giving a
truncated 16-bit memory address, which points to an operand address in the
range 00000h, to OFFFFh. The operand is the content of the addressed
memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it.

Example: ADD.B EDE,TONI ;

16-Bit MSP430X CPU 4-23

CPU Registers

4-24

The previous instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.
Bytes EDE and TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC +
4766h where the PC index 4766h is the result of 0579Ch —
01036h = 04766h. Address 01036h is the location of the index
for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC +
F740h, is the truncated 16-bit result of
00778h — 1038h = FF740h. Address 01038h is the location
of the index for this example.

Before: After:

Address Address
Space Space
0103Ah xxxxh 0103Ah xxxxh PC
01038h | F740h 01038h | F740h
01036h | 4766h 01036h | 4766h
01034h | o05DOh | PC 01034h | 50DOh
01038h 32h src
0077Ah xxxxh +0F740h 0077Ah xxxxh +45h dst
00778h | xx45h 00778n 00778h | xx77h 77h Sum
01036h
0579Eh xxxxh +04766h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU

CPU Registers
MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits
19:16 are used for the address calculation of the operand. The operand may
be located in memory in the range PC £32 KB, because the index, X, is a
signed 16-bit value. In this case, the address of the operand can overflow or

underflow into the lower 64-KB memory space as shown in Figure 4-20 and
Figure 4-21.

Figure 4-20. Symbolic Mode Running in Upper Memory

Upper Memory
PC.19:16 >0
—— 19 1615 0
FFFFF
115 Program
counter PC
PC.19:0 —» PC 32 KB
s |s 16bitbyteindex | 16-Pitsigned PC
index (sign
10000 extended to
OFFFF <+ 20 bits)
m
X (20-bit signed add)
3
9]
2
S
-
00000 Memory address

Figure 4-21. Overflow and Underflow for the Symbolic Mode

ARy
NN

PC.19:0

v

~ FFFFF

10000 | oo R
NN NN
\

N

+32KB

+32KB

Lower 64 KB

0000C

16-Bit MSP430X CPU 4-25

CPU Registers

4-26

Length:

Operation:

Comment:

Example:

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the PC. This delivers a
20-bit address, which points to an address in the range 0 to
FFFFFh. The operand is the content of the addressed
memory location.

Valid for source and destination. The assembler calculates
the PC index and inserts it

ADD.W EDE, &TONI ;

This instruction adds the 16-bit data contained in source word EDE and
destination word TONI and places the 16-bit result into the destination word
TONI. For this example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h
which is the 16-bit result of 3379Ch — 2F036h = 04766h.
Address 2F036h is the location of the index for this example.
Destination: Word TONI located at address 00778h pointed to by the
absolute address 00778h.
Before: After:
Address Address
Space Space
2F03Ah xxxxh 2F03Ah xxxxh PC
2F038h | 0778h 2F038h | 0778h
2F036h 4766h 2F036h 4766h
2F034h 5092h | PC 2F034h 5092h
2F036h
3379Eh Xxxxxh +04766h 3379Eh xxxxh
3379Ch 5432h 8379Ch 3379Ch 5432h
5432h src
0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 7777h 7777h - Sum

16-Bit MSP430X CPU

CPU Registers

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can
be located anywhere in the range of PC + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the
20-bit index. The four MSBs of the index are contained in the
extension word, the 16 LSBs are contained in the word
following the instruction.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.B EDE,TONI ;

The instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by
PC + 14766h, is the 20-bit result of
3579Ch - 21036h = 14766h. Address 21036h is the address
of the index in this example.

Destination: Byte TONI located at address 77778h, pointed to by
PC + 56740h, is the 20-bit result of
77778h - 21038h = 56740h. Address 21038h is the address
of the index in this example..

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 6740h 21038h 6740h
21036h 4766h 21036h 4766h
21034h 50D0h 21034h 50D0h
21032h 18C5h PC 21032h 18C5h
21038h 32h src
7777Ah xxxxh +56740h _ 7777Ah xxxxh +45h dst
777780 | xx4sh 77780 orzen | xx77h 77h Sum
21036h
3579Eh xxxxh +14766h _ 3579Eh xxxxh
3579Ch
3579Ch xx32h 3579Ch xx32h

16-Bit MSP430X CPU 4-27

CPU Registers

4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as
the address of the operand. The Absolute mode has two addressing
possibilities:

(1 Absolute mode in lower 64-KB memory

[MSP430X instruction with Absolute mode

4-28 16-Bit MSP430X CPU

CPU Registers

Absolute Mode in Lower 64 KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute
address is a 16-bit value and therefore points to an address in the lower 64 KB
of the memory range. The address is calculated as an index from 0 and is
stored in the word following the instruction The RAM and the peripheral
registers can be accessed this way and existing MSP430 software is usable
without modifications.

Length: Two or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADD.W &EDE, &TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 5292h | PC 21034h 5292h

5432h src
0777Ah xxxxh 0777Ah XXxxh +2345h dst
07778h | 2345h o7778h | 7777 | 7777R Sum
0579Eh xxxxh 0579Eh xxxxh
0579Ch 5432h 0579Ch 5432h

16-Bit MSP430X CPU 4-29

CPU Registers

MSP430X Instruction with Absolute Mode

4-30

If an MSP430X instruction is used with Absolute addressing mode, the
absolute address is a 20-bit value and therefore points to any address in the
memory range. The address value is calculated as an index from 0. The four
MSBs of the index are contained in the extension word, and the 16 LSBs are
contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADDX.A &EDE, &TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 52D2h 21034h 52D2h
21032h 1987h PC 21032h 1987h

65432h src
7777Ah 0001h 7777Ah 0007h +12345h dst
77778n | 2345h 777780 | 77770 | 77777h Sum
3579Eh 0006h 3579Eh 0006h
3579Ch 5432h 3579Ch 5432h
16-Bit MSP430X CPU

CPU Registers

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the
source operand. The Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words

Operation: The operand is the content the addressed memory location.
The source register Rsrc is not modified.

Comment: Valid only for the source operand. The substitute for the
destination operand is O(Rdst).

Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3,579Ch for this
example.
Destination: Word pointed to by R6 + 2100h which results in address
45678h + 2100h = 7778h.
Before: After:
Address Register Address Register
Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Ch
21036h | 2100h R6| 45678h 21036h | 2100h R6| 45678h
21034h | 55A6h | PC 21034h | 55A6h
45678h 5432h src
4777Ah | xxxxh +02100h 4777Ah | xxxxh +2345h _ dst
47778h | 2345h 47778h 477780 | 7777h 7777h Sum
3579Eh xxxxh 3579Eh Xxxxh
3579Ch 5432h | R5 3579Ch 5432h | R5
16-Bit MSP430X CPU 4-31

CPU Registers

4.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc
as the source operand. Rsrc is then automatically incremented by 1 for byte
instructions, by 2 for word instructions, and by 4 for address-word instructions
immediately after accessing the source operand. If the same register is used
for source and destination, it contains the incremented address for the
destination access. Indirect Autoincrement mode always uses 20-bit

addresses.

Length: One, two, or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid only for the source operand.

Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Byte pointed to by R6 + Oh which results in address 0778h for
this example.

Before: After:

Address Register Address Register

Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Dh
21036h 0000h R6| 00778h 21036h 0000h R6| 00778h
21034h 55F6h PC 21034h 55F6h

00778h 32h src

0077Ah xxxxh +0000h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h - Sum
3579Dh xxh 3579Dh xxh R5
3579Ch 32h R5 3579Ch xx32h

4-32 16-Bit MSP430X CPU

CPU Registers
4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including
the constant in the memory location following the instruction. The program
counter PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or
address-word instructions. The Immediate mode has two addressing
possibilities:

] 8- or 16-bit constants with MSP430 instructions

[J 20-bit constants with MSP430X instruction

MSP430 Instructions with Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the
constant is an 8- or 16-bit value and is stored in the word following the

instruction.

Length: Two or three words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with
the 16-bit destination operand.

Comment: Valid only for the source operand.

Example: ADD #3456h, &TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h.

Destination: Word at address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 0778h 21038h 0778h
21036h 3456h 21036h 3456h
21034h 50B2h | PC 21034h 50B2h

3456h src

0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 579Bn | 579Bh Sum

16-Bit MSP430X CPU 4-33

CPU Registers

MSP430X Instructions with Immediate Mode

4-34

If an MSP430X instruction is used with immediate addressing mode, the
constant is a 20-bit value. The 4 MSBs of the constant are stored in the
extension word and the 16 LSBs of the constant are stored in the word
following the instruction.

Length: Three or four words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with
the 20-bit destination operand.

Comment: Valid only for the source operand.
Example: ADDX.A #23456h, &TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h.

Destination: Two words beginning with address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 3456h 21036h 3456h
21034h 50F2h 21034h 50F2h
21032h 1907h PC 21032h 1907h

23456h src

7777Ah 0001h 7777Ah 0003h +12345h _ dst
77778 | 2345h 77778n | 579Bn | S579Bh Sum

16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430
CPU. These instructions are used throughout the 1-MB memory range unless
their 16-bit capability is exceeded. The MSP430X instructions are used when
the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and
MSP430X instruction:

(1 To use only the MSP430 instructions: The only exceptions are the CALLA
and the RETA instruction. This can be done if a few, simple rules are met:

B Placement of all constants, variables, arrays, tables, and data in the
lower 64 KB. This allows the use of MSP430 instructions with 16-bit
addressing for all data accesses. No pointers with 20-bit addresses
are needed.

B Placement of subroutine constants immediately after the subroutine
code. This allows the use of the symbolic addressing mode with its
16-bit index to reach addresses within the range of PC £32 KB.

[d To use only MSP430X instructions: The disadvantages of this method are
the reduced speed due to the additional CPU cycles and the increased
program space due to the necessary extension word for any double
operand instruction.

[d Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X
instructions.

16-Bit MSP430X CPU 4-35

MSP430 and MSP430X Instructions

4.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the
lower 64 KB or beyond it. The only exceptions are the instructions CALL and
RET which are limited to the lower 64 KB address range. CALLA and RETA

instructions have been added to the MSP430X CPU to handle subroutines in
the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 4-22 shows the format of the MSP430 double operand instructions.
Source and destination words are appended for the Indexed, Symbolic,

Absolute and Immediate modes. Table 4-4 lists the twelve MSP430 double

operand instructions.

Figure 4-22. MSP430 Double Operand Instruction Format

15 12 11 8 7 6 5 0
Op-code Rsrc Ad | B/W As Rdst
Source or Destination 15:0
Destination 15:0
Table 4-4. MSP430 Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits

D-Reg N ya c
MOV (.B) src,dst src — dst - - -
ADD (.B) src,dst src+ dst — dst * * *
ADDC(.B) src,dst src+dst+C — dst * * *
SUB (.B) src,dst dst+.not.src + 1 — dst * * *
SUBC (.B) src,dst dst+ .not.src+ C — dst * * *
CMP (.B) src,dst dst-src * * *
DADD(.B) src,dst src+ dst+ C — dst(decimally) * * *
BIT(.B) src,dst src.and. dst * * z
BIC(.B) src,dst .not.src.and. dst — dst - -
BIS(.B) src,dst src.or. dst — dst - - -
XOR (.B) src,dst src .xor. dst — dst * * Z
AND (.B) src,dst src.and. dst — dst * * Z

*

The status bit is affected

- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

4-36 16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

Single Operand (Format Il) Instructions

Figure 4-23 shows the format for MSP430 single operand instructions, except
RETI. The destination word is appended for the Indexed, Symbolic, Absolute
and Immediate modes .Table 4-5 lists the seven single operand instructions.

Figure 4-23. MSP430 Single Operand Instructions

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

Table 4-5. MSP430 Single Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
RRC(.B) dst C->MSB....... LSB - C * * * *
RRA(.B) dst MSB - MSB -....LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, src - @SP - - - -
SWPB dst bit 15...bit 8 & bit 7...bit 0 - - - -
CALL dst Call subroutine in lower 64 KB - - - -
RETI TOS - SR, SP +2 - SP * * * *
TOS - PC,SP +2 - SP
SXT dst Register mode: 0 * * 4

bit 7 — bit 8 ...bit 19
Other modes:
bit 7 — bit 8 ...bit 15

* The status bit is affected

— The status bit is not affected
0 The status bit is cleared

1 The status bit is set

16-Bit MSP430X CPU 4-37

MSP430 and MSP430X Instructions

Jumps

Figure 4-24 shows the format for MSP430 and MSP430X jump instructions.
The signed 10-bit word offset of the jump instruction is multiplied by two,
sign-extended to a 20-bit address, and added to the 20-bit program counter.
This allows jumps in a range of -511 to +512 words relative to the program
counter in the full 20-bit address space Jumps do not affect the status bits.

Table 4-6 lists and describes the eight jump instructions.

Figure 4-24. Format of the Conditional Jump Instructions

15 13 12 10 9 8

Op-Code Condition S 10-Bit Signed PC Offset

Table 4-6. Conditional Jump Instructions
Mnemonic S-Reg, D-Reg Operation
JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
Jc Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JMP Label Jump to label unconditionally
16-Bit MSP430X CPU

4-38

Emulated Instructions

MSP430 and MSP430X Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions
are instructions that make code easier to write and read, but do not have
op-codes themselves. Instead, they are replaced automatically by the
assembler with a core instruction. There is no code or performance penalty for
using emulated instructions. The emulated instructions are listed in Table 4-7.

Table 4-7. Emulated Instructions

Instruction Explanation Emulation \') C
ADC(.B) dst Add Carry to dst ADDC(.B) #0,dst * *
BR dst Branch indirectly dst MOV dst, PC - -
CLR(.B) dst Cleardst MOV (.B) #0,dst - -
CLRC Clear Carry bit BIC #1,SR - 0
CLRN Clear Negative bit BIC #4,SR - -
CLRZ Clear Zero bit BIC #2,SR - -
DADC(.B) dst AddCarrytodstdecimally DADD(.B) #0,dst * *
DEC(.B) dst Decrement dst by 1 SUB(.B) #1,dst * *
DECD(.B) dst Decrement dst by 2 SUB(.B) #2,dst * *
DINT Disable interrupt BIC #8,SR - -
EINT Enable interrupt BIS #8,SR - -
INC(.B) dst Increment dst by 1 ADD(.B) #1,dst * *
INCD(.B) dst Incrementdst by 2 ADD(.B) #2,dst * *
INV(.B) dst Invert dst XOR(.B) #-1,dst * *
NOP No operation MOV R3,R3 - -
POP dst Pop operand from stack MOV @SP+,dst - -
RET Return from subroutine MOV @SP+, PC - -
RLA(.B) dst Shift left dst arithmetically ADD(.B) dst,dst * *
RLC(.B) dst Shift left dst ADDC(.B) dst,dst * *
logically through Carry
SBC(.B) dst Subtract Carry from dst SUBC(.B) #0,dst * *
SETC Set Carry bit BIS #1,SR - 1
SETN Set Negative bit BIS #4,SR - -
SETZ Set Zero bit BIS #2,SR - -
TST(.B) dst Test dst CMP (.B) #0,dst 0 1
(compare with 0)
16-Bit MSP430X CPU 4-39

MSP430 and MSP430X Instructions

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.

The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 4-8 lists the length and the CPU cycles for reset, interrupts and

subroutines.

Table 4-8. Interrupt, Return and Reset Cycles and Length

Execution Time

Length of

Action MCLK Cycles Instruction (Words)
Return from interrupt RETI 3t 1
Return from subroutine RET 3 1
Interrupt request service (cycles 5t -

needed before 1t instruction)
WDT reset 4

Reset (RST/NMI) 4

T The cycle count in MSP430 CPU is 5.
* The cycle count in MSP430 CPU is 6.

4-40 16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

Format-ll (Single Operand) Instruction Cycles and Lengths

Table 4-9 lists the length and the CPU cycles for all addressing modes of the
MSP430 single operand instructions.

Table 4-9. MSP430 Format-II Instruction Cycles and Length

No. of Cycles Length of
Instruction Example
Addressing RRA, RRC Length of
Mode SWPB, SXT PUSH CALL Instruction Example
Rn 1 3 3t 1 SWPB R5
@Rn 3 af 4 1 RRC @R9
@Rn+ 3 3t 4% 1 SWPB @R10+
#N n.a. 3t 4% 2 CALL #LABEL
X(Rn) 4 4% 4% 2 CALL 2(R7)
EDE 4 4% 4% 2 PUSH EDE
&EDE 4 4% 4% 2 SXT &EDE

T The cycle count in MSP430 CPU is 4.
¥ The cycle count in MSP430 CPU is 5. Also, the cycle count is 5 for X(Rn) addressing mode, when
Rn = SP.

Jump Instructions. Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

16-Bit MSP430X CPU 4-41

MSP430 and MSP430X Instructions

Format-I (Double Operand) Instruction Cycles and Lengths

Table 4-10 lists the length and CPU cycles for all addressing modes of the
MSP430 format-I instructions.

Table 4-10.MSP430 Format-I Instructions Cycles and Length

Addressing Mode No. of Length of

Src Dst Cycles Instruction Example

Rn Rm 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4t 2 ADD R5,4(R6)

EDE 4t 2 XOR R8,EDE

&EDE 4t 2 MOV RS, &EDE
@Rn Rm 2 1 AND @R4,R5

PC 3 1 BR @R8

x(Rm) 5t 2 XOR @R5,8(R6)

EDE 5t 2 MOV @R5,EDE

&EDE 5t 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+,R6

PC 3 1 BR @R+

x(Rm) 5t 2 XOR @R5,8(R6)

EDE 5t 2 MOV @R9+,EDE

&EDE 5t 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5t 3 MOV ~ #0300h, 0 (SP)

EDE 5t 3 ADD #33,EDE

&EDE 5f 3 ADD #33,&EDE
x(Rn) Rm 3 2 MOV 2 (R5) ,R7

PC 3 2 BR 2 (R6)

TONI 6t 3 MOV 4 (R7),TONI

x(Rm) 6t 3 ADD 4 (R4),6(R9)

&TONI 6t 3 MOV 2 (R4),&TONI
EDE Rm 3 2 AND EDE, R6

PC 3 2 BR EDE

TONI 6t 3 CMP EDE, TONI

x(Rm) 6t 3 MOV EDE, 0 (SP)

&TONI 6t 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE, R8

PC 3 2 BR &EDE

TONI 6t 3 MOV &EDE, TONI

x(Rm) 6t 3 MOV &EDE, 0 (SP)

&TONI 6t 3 MOV &EDE, &TONI

t MOV, BIT, and CMP instructions execute in 1 fewer cycle

4-42 16-Bit MSP430X CPU

MSP430X Extended Instructions

4.5.2 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Most MSP430X instructions require an additional word
of op-code called the extension word. Some extended instructions do not
require an additional word and are noted in the instruction description. All
addresses, indexes and immediate numbers have 20-bit values, when
preceded by the extension word.

There are two types of extension word:

(1 Register/register mode for Format-l instructions and register mode for
Format-Il instructions.

(1 Extension word for all other address mode combinations.

16-Bit MSP430X CPU 4-43

MSP430X Extended Instructions

Register Mode Extension Word

The register mode extension word is shown in Figure 4-25 and described in
Table 4-11. An example is shown in Figure 4-27.

Figure 4-25. The Extension Word for Register Modes

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 zc| # |aL]l o] o (n-1)/Rn

Table 4—11. Description of the Extension Word Bits for Register Mode

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension
words.

10:9 Reserved

ZC Zero carry bit.

0: The executed instruction uses the status of the carry bit C.

1: The executed instruction uses the carry bit as 0. The carry bit will
be defined by the result of the final operation after instruction execu-

tion.
Repetition bit.
0: The number of instruction repetitions is set by extension-word bits
3:0.

1: The number of instructions repetitions is defined by the value of the
four LSBs of Rn. See description for bits 3:0.

A/L Data length extension bit. Together with the B/W-bits of the following
MSP430 instruction, the AL bit defines the used data length of the
instruction.

A/L B/W Comment
0 0 Reserved
0 1 20-bit address-word
1 0 16-bit word
1 1 8-bit byte

5:4 Reserved
3:.0 Repetition Count.
#=0: These four bits set the repetition count n. These bits contain
n-1.

#=1: These four bits define the CPU register whose bits 3:0 set the
number of repetitions. Rn.3:0 contain n - 1.

4-44 16-Bit MSP430X CPU

MSP430X Extended Instructions

Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4-26 and
described in Table 4-12. An example is shown in Figure 4-28.

Figure 4-26. The Extension Word for Non-Register Modes

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 AL| O 0 | Destination bits 19:16

Table 4—12. Description of the Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are exten-
sion words.

Source Bits The four MSBs of the 20-bit source. Depending on the source

19:16 addressing mode, these four MSBs may belong to an immedi-

ate operand, an index or to an absolute address.

A/L Data length extension bit. Together with the B/W-bits of the fol-
lowing MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/L B/W Comment
0 0 Reserved
0 1 20 bit address-word
1 0 16 bit word
1 1 8bitbyte
5:4 Reserved

Destination Bits The four MSBs of the 20-bit destination. Depending on the des-
19:16 tination addressing mode, these four MSBs may belong to an
index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX
The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 n.a.
1 0 SWPB.W, SXTX.W
1 1 n.a.

16-Bit MSP430X CPU 4-45

MSP430X Extended Instructions

Figure 4-27. Example for an Extended Register/Register Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0o o0 1 1 00 zc| # |AL| Rswd (n-1)/Rn

Op-code Rsrc Ad |B/W As Rdst

XORX.A R9,R8

1: Repetition count
in bits 3:0

0: Use Carry | 01: Address word

l

0 0 0 1 1 0 0 0 0 0 0
14(XOR) 9 0 1 0 8(R8)
XORX instruction Source R9 T Destination R8
Destination

register mode
9 Source

register mode

Figure 4-28. Example for an Extended Immediate/Indexed Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad | B/W As Rdst

Source 15:0

Destination 15:0

XORX.A #12345h, 45678h(R15)

X(Rn)
01: Address @PC+
ord
18xx extension word 12345h /7
0 0 0 1 1 1 l 0 0 4
14 (XOR) 0 (PC) 1] 1 3 15 (R15)

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

4-46 16-Bit MSP430X CPU

MSP430X Extended Instructions

Extended Double Operand (Format-l) Instructions

All twelve double-operand instructions have extended versions as listed in

Table 4-13.

Table 4-13. Extended Double Operand Instructions

Status Bits

Mnemonic Operands Operation N Z C
MOVX (.B, .A) src,dst src — dst - - -
ADDX (.B, .A) src,dst src + dst — dst oox
ADDCX (.B, .A) src,dst src + dst + C — dst o
SUBX (.B, .A) src,dst dst + .not.src + 1 — dst oox
SUBCX(.B, .A) src,dst dst + .not.src + C — dst oorr
CMPX (.B, .A) src,dst dst — src oox
DADDX (.B, .A) src,dst src + dst + C — dst (decimal) o
BITX(.B,.A) src,dst src .and. dst 4
BICX(.B, .A) src,dst .not.src .and. dst — dst - - -
BISX(.B, .A) src,dst src .or. dst — dst - - -
XORX (.B, .A) src,dst src .xor. dst — dst 4
ANDX (.B, .A) src,dst src .and. dst — dst 4
* The status bit is affected
— The status bit is not affected
0 The status bit is cleared
1 The status bit is set

16-Bit MSP430X CPU 4-47

MSP430X Extended Instructions

The four possible addressing combinations for the extension word for format-|
instructions are shown in Figure 4-29.

Figure 4-29. Extended Format-I Instruction Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 0
0 0 (O 1 0 0|zC| # |AL| O 0 n-1/Rn
Op-code src 0 |BW] O 0 dst
0 0 (O I 1 src.19:16 ALl O 0 0 0 0 0
Op-code src Ad | B/W As dst
src.15:0
0 0 (O I 1 0 0 0 0 |AL] O 0 dst.19:16
Op-code src Ad |B/W As dst
dst.15:0
0 0 (O 1 src.19:16 ALl O 0 dst.19:16
Op-code src Ad |B/W As dst
src.15:0
dst.15:0

If the 20-bit address of a source or destination operand is located in memory,
not in a CPU register, then two words are used for this operand as shown in
Figure 4-30.

Figure 4-30. 20-Bit Addresses in Memory

i5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

AAreSS+H2 | 0 eoeeeeeieeeee et 0 19:16

Address Operand LSBs 15:0

4-48 16-Bit MSP430X CPU

MSP430X Extended Instructions

Extended Single Operand (Format-Il) Instructions

Extended MSP430X Format-Il instructions are listed in Table 4-14.

Table 4-14. Extended Single-Operand Instructions

Operation Status Bits
Mnemonic Operands n V N Z C
CALLA dst Call indirect to subroutine (20-bit address) - - - -
POPM.A #n,Rdst Pop n 20-bit registers from stack 1-16 - - - -
POPM.W #n,Rdst Pop n 16-bit registers from stack 1-16 - - - -
PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1-16 - - - -
PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1-16
PUSHX (.B, .A) src Push 8/16/20-bit source to stack - - - -
RRCM (.A) #n,Rdst Rotate right Rdst n bits through carry 1i-4 0 * * ~*
(16-/20-bit register)
RRUM (.A) #n,Rdst Rotate right Rdst n bits unsigned 1-4 0 * * *
(16-/20-bit register)
RRAM (.A) #n,Rdst Rotate right Rdst n bits arithmetically 1-4 > > > =
(16-/20-bit register)
RLAM (.A) #n,Rdst Rotate left Rdst n bits arithmetically 1-4 > > > =
(16-/20-bit register)
RRCX(.B, .A) dst Rotate right dst through carry 1 o * *
(8-/16-/20-bit data)
RRUX(.B, .A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 o * *
RRAX (.B, .A) dst Rotate right dst arithmetically 1 oo
SWPBX (.A) dst Exchange low byte with high byte 1 - - - -
SXTX (.A) Rdst Bit7 — bit8 ... bit19 1 e
SXTX (.A) dst Bit7 — bit8 ... MSB 1 oo

16-Bit MSP430X CPU 4-49

MSP430X Extended Instructions

The three possible addressing mode combinations for format-Il instructions
are shown in Figure 4-31.

Figure 4-31. Extended Format-Il Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 0
0 0 0 1 1 0 0 |zC| # | AL] O 0 n-1/Rn
Op-code Bw| 0| O dst

Op-code BwW]| 1 X dst
0 0 0 1 1 0 0 0] 0 AL|] O 0 dst.19:16
Op-code BW]| X 1 dst
dst.15:0

Extended Format Il Instruction Format Exceptions

Exceptions for the Format Il instruction formats are shown below.

Figure 4-32. PUSHM/POPM Instruction Format

15 8 7 4 3 0

Op-code n-1 Rdst — n+1

Figure 4-33. RRCM, RRAM, RRUM and RLAM Instruction Format

15 12 11 10 9 4 3 0

C n-1 Op-code Rdst

4-50 16-Bit MSP430X CPU

MSP430X Extended Instructions

Figure 4-34. BRA Instruction Format

15 12 N 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

#imm15:0 / &abs15:0

C Rsrc Op-code 0(PC)

index15:0

Figure 4-35. CALLA Instruction Format

15 4 3 0
Op-code Rdst
Op-code Rdst
index15:0
Op-code #imm/ix/abs19:16
#imm15:0 / index15:0 / &abs15:0

16-Bit MSP430X CPU 4-51

MSP430X Extended Instructions

Extended Emulated Instructions

Table 4-15.Extended Emulated Instructions

The extended instructions together with the constant generator form the
extended Emulated instructions. Table 4-15 lists the Emulated instructions.

Instruction

Explanation

Emulation

ADCX (.B, .A) dst
BRA dst

RETA

CLRA Rdst

CLRX (.B, .A) dst
DADCX (.B, .A) dst
DECX(.B, .A) dst
DECDA Rdst

DECDX (.B, .A) dst
INCX(.B, .A) dst
INCDA Rdst

INCDX (.B, .A) dst
INVX(.B, .A) dst
RLAX (.B, .A) dst
RLCX(.B, .A) dst
SBCX (.B, .A) dst
TSTA Rdst
TSTX(.B, .A) dst

POPX dst

Add carry to dst

Branch indirect dst
Return from subroutine
Clear Rdst

Clear dst

Add carry to dst decimally
Decrement dst by 1
Decrement dst by 2
Decrement dst by 2
Increment dst by 1
Increment Rdst by 2
Increment dst by 2

Invert dst

Shift left dst arithmetically

Shift left dst logically through carry

Subtract carry from dst
Test Rdst (compare with 0)
Test dst (compare with 0)

Pop to dst

ADDCX (.B, .A) #0,dst
MOVA dst, PC

MOVA @SP+,PC

MOV #0,Rdst

MOVX (.B, .A) #0,dst
DADDX (.B, .A) #0,dst
SUBX (.B, .A) #1,dst
SUBA #2,Rdst

SUBX (.B, .A) #2,dst
ADDX (.B, .A) #1,dst
ADDA #2,Rdst

ADDX (.B, .A) #2,dst
XORX (.B, .A) #-1,dst
ADDX (.B, .A) dst,dst
ADDCX (.B, .A) dst,dst
SUBCX (.B, .A) #0,dst
CMPA #0,Rdst

CMPX (.B, .A) #0,dst
MOVX (.B, .A) @SP+,dst

4-52 16-Bit MSP430X CPU

MSP430X Extended Instructions

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the register mode and the Immediate mode, except for the MOVA instruction
as listed in Table 4-16. Restricting the addressing modes removes the need
for the additional extension-word op-code improving code density and
execution time. Address instructions should be used any time an MSP430X
instruction is needed with the corresponding restricted addressing mode.

Table 4-16.Address Instructions, Operate on 20-bit Registers Data

Status Bits

Mnemonic Operands Operation V N Z2 C

ADDA Rsrc,Rdst Add source to destination ooxox

#imm20,Rdst register

MOVA Rsrc,Rdst Move source to destinaton - - - -

#imm20,Rdst

z16 (Rsrc) ,Rdst

EDE, Rdst

&abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc, z16 (Rdst)

Rsrc, &abs20

CMPA Rsrc,Rdst Compare source to destina- * * * *

#imm20,Rdst tion register

SUBA Rsrc,Rdst Subtract source from des- ooxox

#imm20, Rdst tination register

16-Bit MSP430X CPU 4-53

MSP430X Extended Instructions

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction
depends on the instruction format and the addressing modes used — not the
instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-ll (Single-Operand) Instruction Cycles and Lengths
Table 4-17 lists the length and the CPU cycles for all addressing modes of the
MSP430X extended single-operand instructions.

Table 4-17.MSP430X Format Il Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)

Instruction Rn @Rn @Rn+ #N X(Rn) EDE &EDE
RRAM n/1 - - - - - -
RRCM n/1 - - - - - -
RRUM n/1 - - - - - -
RLAM n/1 - - - - - -
PUSHM 2+n/1 - - - - - -
PUSHM.A 2+2n/1 - - - - - -
POPM 2+n/1 - - - - - -
POPM.A 2+2n/1 - - - - - -
CALLA 4/ 5/1 5/1 4/2 61/2 6/2 6/2
RRAX(.B) 14n/2 4/2 4/2 - 5/3 5/3 5/3
RRAX.A 1+n/2 6/2 6/2 - 7/3 7/3 7/3
RRCX(.B) 1402 4/2 4/2 - 5/3 5/3 5/3
RRCX.A 1+n/2 6/2 6/2 - 7/3 7/3 7/3
PUSHX(.B) 4/2 4/2 4/2 4/3 51/3 5/3 5/3
PUSHX.A 5/2 6/2 6/2 6/3 7173 7/3 7/3
POPX(.B) 3/2 - - - 5/3 5/3 5/3
POPX.A 4/2 - - - 7/3 7/3 7/3

T Add one cycle when Rn = SP.

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

Table 4-18 lists the length and CPU cycles for all addressing modes of the
MSP430X extended format-I instructions.

4-54 16-Bit MSP430X CPU

MSP430X Extended Instructions

Table 4-18.MSP430X Format-I Instruction Cycles and Length

No. of Length of
Addressing Mode Cycles Instruction
Source Destination .B/W .A .B/.W/.A Examples
Rn Rmt 2 2 2 BITX.B R5,R8
PC 3 3 2 ADDX R9,PC
X(Rm) 5t 78 3 ANDX.A R5,4(R6)
EDE 5% 78 3 XORX R8,EDE
&EDE 5% 78 3 BITX.W R5,&EDE
@Rn Rm 3 4 2 BITX @R5,R8
PC 3 4 2 ADDX @R9,PC
X(Rm) 6% 98 3 ANDX.A @R5,4(R6)
EDE 6t 98 3 XORX @R8,EDE
&EDE 6% 98 3 BITX.B @R5,&EDE
@Rn+ Rm 3 4 2 BITX @R5+,R8
PC 4 5 2 ADDX.A @R9+,PC
X(Rm) 6+ 98 3 ANDX @R5+,4(R6)
EDE 6+ 98 3 XORX.B @R8+,EDE
&EDE 6% 98 3 BITX @R5+,&EDE
#N Rm 3 3 3 BITX #20,R8
PCT 4 4 3 ADDX.A #FE000h,PC
X(Rm) 6+ 88 4 ANDX #1234,4(R6)
EDE 6% 88 4 XORX #A5A5h,EDE
&EDE 6% 88 4 BITX.B #12,&EDE
X(Rn) Rm 4 5 3 BITX 2(R5),R8
pct 5 6 3 SUBX.A 2(R6),PC
X(Rm) 7% 108 4 ANDX 4(R7),4(R86)
EDE 7+ 108 4 XORX.B 2(R6),EDE
&EDE 7+ 108 4 BITX 8(SP),&EDE
EDE Rm 4 5 3 BITX.B EDE,R8
2o}l 5 6 3 ADDX.A EDE,PC
X(Rm) 7% 108 4 ANDX EDE,4(R6)
EDE 7+ 108 4 ANDX EDE,TONI
&TONI 7+ 108 4 BITX EDE,&TONI
&EDE Rm 4 5 3 BITX &EDE,R8
pcCf 5 6 3 ADDX.A &EDE,PC
X(Rm) 7+ 108 4 ANDX.B &EDE,4(R86)
TONI 7% 108 4 XORX &EDE, TONI
&TONI 7+ 108 4 BITX &EDE,&TONI

T Repeat instructions require n+1 cycles where n is the number of times the instruction is

executed.

* Reduce the cycle count by one for MOV, BIT, and CMP instructions.
§ Reduce the cycle count by two for MOV, BIT, and CMP instructions.
1 Reduce the cycle count by one for MOV, ADD, and SUB instructions.

16-Bit MSP430X CPU

4-55

MSP430X Extended Instructions

MSP430X Address Instruction Cycles and Lengths

Table 4-19 lists the length and the CPU cycles for all addressing modes of the
MSP430X address instructions.

Table 4-19.Address Instruction Cycles and Length

Execution Length of
Time MCLK Instruction
Addressing Mode Cycles (Words)
CMPA CMPA
MOVA ADDA ADDA

Source Destination BRA SUBA MOVA SUBA Example

Rn Rn 1 1 1 CMPA R5,R8
PC 2 2 1 1 SUBA R9,PC
x(Rm) 4 - 2 - MOVA R5,4(R6)
EDE 4 - 2 - MOVA R8,EDE
&EDE 4 - 2 - MOVA R5,&EDE
@Rn Rm 3 - 1 - MOVA @R5,R8
PC 3 - 1 - MOVA @R9,PC
@Rn+ Rm 3 - 1 - MOVA @R5+,R8
PC 3 - 1 - MOVA @R9+,PC
#N Rm 2 3 2 2 CMPA #20,R8
PC 3 3 2 2 SUBA #FEO000h,PC
x(Rn) Rm 4 - 2 - MOVA 2(R5),R8
PC 4 - 2 - MOVA 2(R6),PC
EDE Rm 4 - 2 - MOVA EDE,R8
PC 4 - 2 - MOVA EDE,PC
&EDE Rm 4 - 2 - MOVA &EDE,R8
PC 4 - 2 - MOVA &EDE,PC

4-56 16-Bit MSP430X CPU

Instruction Set Description

4.6 Instruction Set Description

The instruction map of the MSP430X shows all available instructions:

000 040 080 OCO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

[0)'60'¢ MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM
10xx | RRc |RRe.Bswes| [RrA |RRAB] sXT | [Push|PusH.H caLL| [ReTi [caLia] [
14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W
18xx Extension Word For Format | and Format Il Instructions
1Cxx

20xx JNE/UNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xXxX MOV, MOV.B

5XXX ADD, ADD.B

BXXX ADDC, ADDC.B

7XXX SUBC, SUBC.B

8xxx SUB, SUB.B

9XXX CMP, CMP.B

Axxx DADD, DADD.B

Bxxx BIT, BIT.B

Cxxx BIC, BIC.B

Dxxx BIS, BIS.B

Exxx XOR, XOR.B

Fxxx AND, AND.B

16-Bit MSP430X CPU 4-57

Instruction Set Description

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown below.

Instruction src or Instruction
Group data.19:16 Identifier dst
Instruction 15 12 1 8 7 4 3 0
MOVA 0|0|0]|0O src 0|0|0]|O dst MOVA @Rsrc,Rdst
0o(0j0]|O src 0|0|0|1 dst MOVA @Rsrc+,Rdst
0(0|0|0 | &abs.19:16 (0|0 |1 |0 dst MOVA &abs20,Rdst
&abs.15:0
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ dst MOVA x(Rsrc),Rdst
x.15:0 +15-bit index x
(0] ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 1 ‘ 1 ‘ 0 ‘ &abs.19:16 | MOVA Rsrc,&abs20
&abs.15:0
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 1 ‘ 1 ‘ 1 ‘ dst MOVA Rsrc,X(Rdst)
x.15:0 +15-bit index x
0 ’ 0 ’ 0 ’ 0 ‘ imm.19:16 ’ 1 ’ 0 ’ 0 ’ 0 ’ dst MOVA #imm20,Rdst
imm.15:0
CMPA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ dst CMPA #imm20,Rdst
imm.15:0
ADDA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ dst ADDA #imm20,Rdst
imm.15:0
SUBA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 1 ‘ 1 ‘ dst SUBA #imm20,Rdst
imm.15:0
MOVA 0o(0|0]|O src 1(1]0|0 dst MOVA Rsrc,Rdst
CMPA 0|0|0]|0O src 11|01 dst CMPA Rsrc,Rdst
ADDA 0(0|0]|O src 1(1]1]0 dst ADDA Rsrc,Rdst
SUBA 0(0|0]|O src 10111 dst SUBA Rsrc,Rdst
Instruction Bit Inst. | Instruction
Group loc. ID Identifier dst
Instruction 15 12 11 10 9 8 7 4 3 0
RRCM.A 0/0|0|O| n-1 |O|O|O|1]O]O dst RRCM.A #n,Rdst
RRAM.A 0(0|{0|O0O| n1 |Of1T]|0O|1]|O]|O dst RRAM.A #n,Rdst
RLAM.A 0/0|0|O0O| n-1 |[1]0]|0O|1]0]O dst RLAM.A #n,Rdst
RRUM.A 0/{0|0|O| n-1 |1][1]0[1]0]0 dst RRUM.A #n,Rdst
RRCM.W 0(0[{0|O0O| n1 |O0O|O|O|1|0O]1 dst RRCM.W #n,Rdst
RRAM.W 0/0|0|O0O|nn-1 |O|1T]|0O|1]0]1 dst RRAM.W #n,Rdst
RLAM.W 0/{0|0|O| n-1 [1]0O]|0O|1]|0]1 dst RLAM.W #n,Rdst
RRUM.W 0(0[{0|O0O| n-1 |1|1]0]|1|0]1 dst RRUM.W #n,Rdst

4-58 16-Bit MSP430X CPU

Instruction Set Description

Instruction Identifier ‘ ‘ dst

Instruction 15 12 1 8 7 6 5 4 3 0

RETI 0|0|0O|1|0|O0O|1|1]|0|0O|O|O]O ‘ 0 ‘ 0 ‘ 0

CALLA o(o|jo|jt1fojo|1(1]0 0|0 dst CALLA Rdst
0|0|O0O|1|0O|O([1[1]O 0|1 dst CALLA x(Rdst)

x.15:0
0|0|O0O|1|OfO([1[1]O 110 dst CALLA @Rdst
0|0|O0O|1|0O|O([1[1]O0 111 dst CALLA @Rdst+
0|0|0|1|0|0|1|1|1|0|0|0| &abs.19:16 |CALLA &abs20
&abs.15:0
0‘0‘0‘1‘0‘0‘1‘1‘1‘0‘0‘1‘ x.19:16 CALLA EDE
x.15:0 CALLA x(PC)
0‘0‘0‘1‘0‘0‘1‘1‘1‘0‘1‘1‘imm.19:16 CALLA #imm20
imm.15:0

Reserved 0[0(O|1]|O|O|1T|1|1]O0|1|[O0|x|Xx|Xx]|X

Reserved 0O[0(Of1T]|]O|O (1|11 X | X [X|[X|[X]|X

PUSHM.A 0(0|0|1|0O[1]|0]|O n-1 dst PUSHM.A #n,Rdst

PUSHM.W 0O(0|0O|1 (O |1]|O0|1 n-1 dst PUSHM.W #n,Rdst

POPM.A 0|0|O0O|1|0O|1]|1]O n-1 dst-n+1 POPM.A #n,Rdst

POPM.W O(0|O|1 (O |1]|1[1 n-1 dst-n+1 POPM.W #n,Rdst

16-Bit MSP430X CPU 4-59

MSP430 Instructions

4.6.2 MSP430 Instructions

The MSP430 instructions are listed and described on the following pages.

4-60 16-Bit MSP430X CPU

* ADC[.W]
* ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to

by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

16-Bit MSP430X CPU 4-61

MSP430 Instructions

ADD[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source word to destination word
Add source byte to destination byte

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst — dst

The source operand is added to the destination operand. The previous content
of the destination is lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump
to label TONI is performed on a carry.

ADD.W @R5,R6
JC TONI

; Add table word to R6. R6.19:16 = 0

; Jump if carry

; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label

TONI is performed if no carry occurs. The table pointer is auto-incremented by
1.R6.19:8=0

ADD.B @R5+,R6
JNC TONI

; Add byte to R6. R5 + 1. R6: 000xxh
; Jump if no carry
; Carry occurred

4-62 16-Bit MSP430X CPU

ADDCI[.W]
ADDC.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Add source word and carry to destination word
Add source byte and carry to destination byte

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C — dst

The source operand and the carry bit C are added to the destination operand.
The previous content of the destination is lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Constant value 15 and the carry of the previous instruction are added to the
16-bit counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to R6.
The jump to label TONI is performed on a carry. R6.19:16 =0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1. R6.19:8 =0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1

JNC TONI ; Jump if no carry
; Carry occurred

16-Bit MSP430X CPU 4-63

MSP430 Instructions

ANDL[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte
Syntax AND src,dst or AND.W src,dst
AND.B src,dst
Operation src .and. dst — dst
Description The source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. 2)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM
located in the lower 64 K. If the result is zero, a branch is taken to label TONI.
R5.19:16=0
MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
; Result >0
or shorter:
AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result O
Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is

incremented by 1 after the fetching of the byte. R6.19:8 =0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

4-64 16-Bit MSP430X CPU

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Clear bits set in source word in destination word
Clear bits set in source byte in destination byte

BIC src,dst or BIC.W src,dst
BIC.B src,dst

(.not. src) .and. dst — dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16=0

BIC.W @R5,R7 ; Clear bits in R7 setin @R5

A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P10UT ; Clear 1/0O port P1 bits setin @R5

16-Bit MSP430X CPU 4-65

MSP430 Instructions

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte
Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst
Operation src .or. dst — dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 =0
BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.
R7.19:16=0
BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is

incremented by 1 afterwards.

BIS.B @R5+,&P10UT ; Set /O port P1 bits. R5 + 1

4-66 16-Bit MSP430X CPU

BIT[.W]
BIT.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Test bits set in source word in destination word
Test bits set in source byte in destination byte

BIT src,dst or BIT.W src,dst
BIT.B src,dst
src .and. dst

The source operand and the destination operand are logically ANDed. The
result affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.\W) resp. Rdst. 19:8 (.B) are not
cleared!

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. 2)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Test if one — or both — of bits 15 and 14 of R5 (16-bit data) is set. Jump to label
TONI if this is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
; Both bits are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set. R7.19:16 are not affected.

BITW @R5,R7 : Test bits in R7
JC TONI ; At least one bit is set

; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in output
Port1. Jump to label TONI if no bit is set. The next table byte is addressed.

BITB @R5+,&P10UT ; Test I/O port P1 bits. R5 + 1

JNC TONI ; No corresponding bit is set
; At least one bit is set

16-Bit MSP430X CPU 4-67

MSP430 Instructions

*BR, BRANCH Branch to destination in lower 64K address space

Syntax BR dst

Operation dst —> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K

address space. All source addressing modes can be used. The branch
instruction is a word instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)

: Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5
BR @R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

4-68 16-Bit MSP430X CPU

CALL
Syntax

Operation

Description

Status Bits

Mode Bits

Examples

MSP430 Instructions

Call a Subroutine in lower 64 K
CALL dst

dst — tmp 16-bit dst is evaluated and stored
SP-2—-8SP

PC —» @SP updated PC with return address to TOS
tmp— PC saved 16-bit dst to PC

A subroutine call is made from an address in the lower 64 K to a subroutine
address in the lower 64 K. All seven source addressing modes can be used.
The call instruction is a word instruction. The return is made with the RET
instruction.

Not affected
PC.19:16: Cleared (address in lower 64 K)

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly
to address.

CALL #EXEC ; Start address EXEC
CALL #0AAO04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address
EXEC. EXEC is located at the address (PC + X) where X is within PC£32 K.

CALL EXEC ; Start address at @ EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute
address EXEC in the lower 64 K.

CALL &EXEC ; Start address at @ EXEC

Register Mode: Call a subroutine at the 16-bit address contained in register
R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word
pointed to by register R5 (20-bit address).

CALL @R5 ; Start address at @ R5

16-Bit MSP430X CPU 4-69

MSP430 Instructions

* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —> dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ; 0 —> TONI
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR.B TONI ; 0 —> TONI

4-70 16-Bit MSP430X CPU

*CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Clear carry bit

CLRC

0—>C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

16-Bit MSP430X CPU 4-71

MSP430 Instructions

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0—>N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

4-72 16-Bit MSP430X CPU

* CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Clear zero bit
CLRZ

0527
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.
CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address con-
tained in the word pointed to by register R5 (20-bit address) and increment the
16-bit address in R5 afterwards by 2. The next time the software uses R5 as
a pointer, it can alter the program execution due to access to the next word ad-
dress in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit
address pointed to by register (R5 + X), e.g. a table with addresses starting at
X. The address is within the lower 64 KB. X is within £32 KB.

CALL X(R5) ; Start address at @ (R5+X). z16(R5)

16-Bit MSP430X CPU 4-73

MSP430 Instructions

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source word and destination word
Compare source byte and destination byte

CMP src,dst or CMP.W src,dst
CMP.B src,dst

(.not.src) + 1 + dst or dst-src

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The result
affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared.

Set if result is negative (src > dst), reset if positive (src = dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if
EDE equals the constant. The address of EDE is within PC + 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
; Not equal

A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if
R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The
address of the source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
; R7 >= 10(R5)

A table byte pointed to by R5 (20-bit address) is compared to the value in
output Port1. Jump to label TONI if values are equal. The next table byte is
addressed.

CMP.B @R5+,&P10UT ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
; Not equal

4-74 16-Bit MSP430X CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSBis 1

Z: Set if dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ;Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ;Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

16-Bit MSP430X CPU 4-75

MSP430 Instructions

DADD[.W]
DADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C — dst (decimally)

The source operand and the destination operand are treated as two (.B) or four
(.W) binary coded decimals (BCD) with positive signs. The source operand
and the carry bit C are added decimally to the destination operand. The source
operand is not affected. The previous content of the destination is lost. The
result is not defined for non-BCD numbers.

N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset
otherwise

V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.

Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

The eight-digit BCD number contained in 16-bit RAM addresses BCD and
BCD+2 is added decimally to an eight-digit BCD number contained in R4 and
R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 =0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 =0
JC OVERFLOW ; Result >9999,9999: go to error
routine
; Result ok

The two-digit BCD number contained in word BCD (16-bit address) is added
decimally to a two-digit BCD number contained in R4. The carry C is added,
also. R4.19:8=0

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.
R4: 0,00ddh

4-76 16-Bit MSP430X CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Decrement destination
Decrement destination

DEC dst or DEC.W dst
DEC.B dst
dst — 1 —> dst

SuB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

Set if result is negative, reset if positive

Set if dst contained 1, reset otherwise

Reset if dst contained 0, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 : Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

; to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 4-36.

Figure 4-36. Decrement Overlap

EDE
4+—
TONI
EDE+254
TONI+254

16-Bit MSP430X CPU 4-77

MSP430 Instructions

* DECD[.W] Double-decrement destination
*DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst
DECD.B dst
Operation dst — 2 —> dst
Emulation SUB #2,dst
Emulation SUB.B #2,dst
Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.
DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the

; range EDE to EDE+OFEh

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1
Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

4-78 16-Bit MSP430X CPU

* DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

MSP430 Instructions

Disable (general) interrupts
DINT

0—- GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

16-Bit MSP430X CPU 4-79

MSP430 Instructions

* EINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Enable (general) interrupts
EINT

1 - GIE
or
(0008h .OR. SR —> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

)

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

4-80 16-Bit MSP430X CPU

* INC[.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMPB #11,STATUS
JEQ OVFL

16-Bit MSP430X CPU 4-81

MSP430 Instructions

*INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

4-82 16-Bit MSP430X CPU

* INV[.W]
* INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #OFFFFh,dst
XOR.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5is now negated, = R5 = 0OFF52h

Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO : Invert LEO, MEM(LEO) = 051h
INC.B LEO : MEM(LEO) is negated, MEM(LEO) = 052h

16-Bit MSP430X CPU 4-83

MSP430 Instructions

JC
JHS

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if carry
Jump if Higher or Same (unsigned)

JC label
JHS label

fC=1: PC + (2 x Offset) - PC
IfC=0: execute the following instruction

The carry bit C in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is reset, the
instruction after the jump is executed.

JC is used for the test of the carry bit C

JHS is used for the comparison of unsigned numbers
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit-> C
JC Labell ; Yes, proceed at Labell
; No, continue

If R5 > R6 (unsigned) the program continues at Label2

CMP Re6,R5 ;1s R5>R67? Infoto C
JHS Label2 ;Yes,C=1
; No, R5 < R6. Continue

If R5 > 12345h (unsigned operands) the program continues at Label2

CMPA #12345h,R5 ;Is R5 > 12345h? Infoto C
JHS Label2 : Yes, 12344h < R5 <= F,FFFFh. C =1
; No, R5 < 12345h. Continue

4-84 16-Bit MSP430X CPU

JEQ,JZ

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions

Jump if equal,Jump if zero
JZ label
JEQ label

fZ=1: PC + (2 x Offset) - PC
IfZ=0: execute following instruction

The Zero bit Z in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is reset, the
instruction after the jump is executed.

JZ is used for the test of the Zero bit Z

JEQ is used for the comparison of operands
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The state of the P2IN.O bit defines the program flow

BIT.B #1,&P2IN ; Port 2, bit 0 reset?
JZ Labell ; Yes, proceed at Labell
; No, set, continue

If R5 = 15000h (20-bit data) the program continues at Label2

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 : Yes, R5 = 15000h. Z =1
; No, R5 # 15000h. Continue

R7 (20-bit counter) is incremented. If its content is zero, the program continues
at Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
; R7 # 0. Continue here.

16-Bit MSP430X CPU 4-85

MSP430 Instructions

JGE
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Greater or Equal (signed)
JGE label

If (N.xor. V) =0: PC + (2 x Offset) > PC
If (N .xor. V) =1: execute following instruction

The negative bit N and the overflow bit V in the status register are tested. If both
bits are set or both are reset, the signed 10-bit word offset contained in the
instruction is multiplied by two, sign extended, and added to the 20-bit program
counter PC. This means a jump in the range -511 to +512 words relative to the
PC in full Memory range. If only one bit is set, the instruction after the jump is
executed.

JGE is used for the comparison of signed operands: also for incorrect results
due to overflow, the decision made by the JGE instruction is correct.

Note: JGE emulates the non-implemented JP (jump if positive) instruction if
used after the instructions AND, BIT, RRA, SXTX and TST. These instructions
clear the V-bit.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run
in the full memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Labell ; Yes, JGE emulates JP
; No, 80h <= EDE <= FFh
If the content of R6 is greater than or equal to the memory pointed to by R7, the

program continues a Label5. Signed data. Data and program in full memory
range.

CMP @R7,R6 ;Is R6 > @R7?
JGE Label5 ; Yes, go to Label5
; No, continue here.

If R5 > 12345h (signed operands) the program continues at Label2. Program
in full memory range.

CMPA #12345h,R5 ;s R5 > 12345h?
JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh.
; No, 80000h <= R5 < 12345h.

4-86 16-Bit MSP430X CPU

JL
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSPA430 Instructions
Jump if Less (signed)
JL label

If (N.xor.V)=1: PC + (2 x Offset) -» PC
If (N .xor. V) =0: execute following instruction

The negative bit N and the overflow bit V in the status register are tested. If only
one is set, the signed 10-bit word offset contained in the instruction is multiplied
by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512 words relative to the PC in full memory
range. If both bits N and V are set or both are reset, the instruction after the
jump is executed.

JL is used for the comparison of signed operands: also for incorrect results due
to overflow, the decision made by the JL instruction is correct.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

If byte EDE contains a smaller, signed operand than byte TONI, continue at
Labell. The address EDE is within PC + 32 K.

CMP.B &TONILLEDE ;Is EDE < TONI
JL Labeld ; Yes
; No, TONI <= EDE
If the signed content of R6 is less than the memory pointed to by R7 (20-bit

address) the program continues at Label Label5. Data and program in full
memory range.

CMP @R7,R6 ; Is R6 < @R77?
JL Label5 ; Yes, go to Label5

; No, continue here.

If R5 < 12345h (signed operands) the program continues at Label2. Data and
program in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?

JL Label2 : Yes, 80000h =< R5 < 12345h.
: No, 12344h < R5 =< 7FFFFh.

16-Bit MSP430X CPU 4-87

MSP430 Instructions

JMP
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Jump unconditionally
JMP label

PC + (2 x Offset) — PC

The signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit program counter PC. This means an
unconditional jump in the range -511 to +512 words relative to the PC in the full
memory. The JMP instruction may be used as a BR or BRA instruction within its
limited range relative to the program counter.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data
in lower 64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop
The interrupt vector TAIV of Timer_AS3 is read and used for the program flow.

Program in full memory range, but interrupt handlers always starts in lower
64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending

JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

4-88 16-Bit MSP430X CPU

JN
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions
Jump if Negative
JN label

IfN=1: PC + (2 x Offset) - PC
IfN=0: execute following instruction

The negative bit N in the status register is tested. If it is set, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If N is reset, the
instruction after the jump is executed.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

The byte COUNT is tested. If it is negative, program execution continues at
Label0. Data in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN LabelO ; Yes, proceed at LabelO
; COUNT 20

R6 is subtracted from R5. If the result is negative, program continues at
Label2. Program in full memory range.

SuB R6,R5 ; R5 - R6 -> R5
JN Label2 ; R5 is negative: R6 > R5 (N =1)
; R5 > 0. Continue here.

R7 (20-bit counter) is decremented. If its content is below zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 : Decrement R7

JN Label4 ; R7 < 0: Go to Label4
; R7 > 0. Continue here.

16-Bit MSP430X CPU 4-89

MSP430 Instructions

JNC
JLO
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Jump if No carry
Jump if lower (unsigned)

JNC label
JLO label

fC=0: PC + (2 x Offset) -» PC
IfC=1: execute following instruction

The carry bit C in the status register is tested. If it is reset, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is set, the
instruction after the jump is executed.

JNC is used for the test of the carry bit C

JLO is used for the comparison of unsigned numbers .
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

If byte EDE < 15 the program continues at Label2. Unsigned data. Data in
lower 64 K, program in full memory range.

CMP.B #15,&EDE : Is EDE < 15? Infoto C
JLO Label2 :Yes, EDE<15.C=0
; No, EDE > 15. Continue

The word TONI is added to R5. If no carry occurs, continue at Label0. The
address of TONI is within PC + 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC Label0 ; No carry
; Carry = 1: continue here

4-90 16-Bit MSP430X CPU

JNZ
JNE
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions

Jump if Not Zero
Jump if Not Equal

JNZ label
JNE label

If Z=0: PC + (2 x Offset) —» PC
IfZ=1: execute following instruction

The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is set, the
instruction after the jump is executed.

JNZ is used for the test of the Zero bit Z

JNE is used for the comparison of operands
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The byte STATUS is tested. If it is not zero, the program continues at Label3.
The address of STATUS is within PC + 32 K.

TST.B STATUS ; Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3

: Yes, continue here

If word EDE = 1500 the program continues at Label2. Data in lower 64 K,
program in full memory range.

CMP #1500,&EDE : Is EDE = 15007 Info to SR
JNE Label2 ; No, EDE # 1500.
; Yes, R5 = 1500. Continue

R7 (20-bit counter) is decremented. If its content is not zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7

JNZ Label4 ; Zero not reached: Go to Label4
; Yes, R7 = 0. Continue here.

16-Bit MSP430X CPU 4-91

MSP430 Instructions

MOV[.W]
MOV.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Loop

Example

Loop

Move source word to destination word
Move source byte to destination byte

MOV src,dst or MOV.W src,dst
MOV.B src,dst

src — dst

The source operand is copied to the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

MOV #01800h,&EDE ; Move 1800h to EDE

The contents of table EDE (word data, 16-bit addresses) are copied to table
TOM. The length of the tables is 030h words. Both tables reside in the lower
64K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)
MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2
CMP #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
; Copy completed

The contents of table EDE (byte data, 16-bit addresses) are copied to table
TOM. The length of the tables is 020h bytes. Both tables may reside in full
memory range, but must be within R10 £32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1
DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
; Copy completed

4-92 16-Bit MSP430X CPU

MSP430 Instructions

*NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of

instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

16-Bit MSP430X CPU 4-93

MSP430 Instructions

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP —>temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 =20Ah
; Mem(R7) = low byte of system stack
POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

4-94 16-Bit MSP430X CPU

PUSH[.W]
PUSH.B
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

MSP430 Instructions

Save a word on the stack
Save a byte on the stack

PUSH dst or PUSH.W dst
PUSH.B dst

SP-2 - SP
dst — @SP

The 20-bit stack pointer SP is decremented by two. The operand is then copied
to the RAM word addressed by the SP. A pushed byte is stored in the low byte,
the high byte is not affected.

Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 ; YYYYh

Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI
are within PC £ 32 K.

PUSH.B EDE ; Save EDE xxXXh
PUSH.B TONI ; Save TONI xxYYh

16-Bit MSP430X CPU 4-95

MSP430 Instructions

RET Return from subroutine

Syntax RET

Operation @SP — PC.15:.0 Saved PCtoPC.15:0. PC.19:16«< 0
SP+2 —» SP

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL
instruction is restored to the PC. The program continues at the address
following the subroutine call. The four MSBs of the program counter PC.19:16
are cleared.

Status Bits Not affected
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower

64K after the CALL

CALL #SUBR ; Call subroutine starting at SUBR
; Return by RET to here
SUBR PUSH R14 ; Save R14 (16 bit data)
; Subroutine code
POP R14 ; Restore R14
RET ; Return to lower 64 K

Figure 4-37. The Stack After a RET Instruction

4-96

ltem n SP— Itemn
SP—¥ PCReturn

Stack before RET Stack after RET
instruction instruction

16-Bit MSP430X CPU

RETI
Syntax

Operation

Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Return from interrupt
RETI

@SP — SR.15:0 Restore saved status register SR with PC.19:16
SP+2 —» SP

@SP — PC.15:0 Restore saved program counter PC.15:0

SP +2 — SP House keeping

The status register is restored to the value at the beginning of the interrupt
service routine. This includes the four MSBs of the program counter PC.19:16.
The stack pointer is incremented by two afterwards.

The 20-bit PC is restored from PC.19:16 (from same stack location as the
status bits) and PC.15:0. The 20-bit program counter is restored to the value
at the beginning of the interrupt service routine. The program continues at the
address following the last executed instruction when the interrupt was granted.
The stack pointer is incremented by two afterwards.

N: restored from stack
Z: restored from stack
C: restored from stack
V: restored from stack

OSCOFF, CPUOFF, and GIE are restored from stack

Interrupt handler in the lower 64 K. A 20-bit return address is stored on the
stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)

; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

16-Bit MSP430X CPU 4-97

MSP430 Instructions

* RLAL.W]
* RLA.B

Syntax

Operation

Emulation

Description

Rotate left arithmetically
Rotate left arithmetically

RLA dst or RLA.W dst
RLA.B dst

C <— MSB <- MSB-1 LSB+1 <-LSB<-0

ADD dst,dst
ADD.B dst,dst

The destination operand is shifted left one position as shown in Figure 4-38.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 4-38. Destination Operand—Arithmetic Shift Left

Status Bits

Mode Bits

Example

Example

Word 15 0
__________________ o
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)
The low byte of R7 is multiplied by 4.

RLA.B R7 Shift left low byte of R7 (x 2)
RLA.B R7 Shift left low byte of R7 (x 4)

' Note: RLA Substitution
The assembler does not recognize the instruction:
RLA @R5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5,0(R5)

4-98 16-Bit MSP430X CPU

* RLC[.W]
* RLC.B

Syntax

Operation
Emulation

Description

MSP430 Instructions

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C <- MSB <- MSB-1 LSB+1<-LSB<-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 4-39.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4-39. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted left one position.

RLC R5 ;(R5x2)+C->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO : Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5

It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5,0(R5)

16-Bit MSP430X CPU 4-99

MSP430 Instructions

RRA[W]
RRA.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Rotate Right Arithmetically destination word
Rotate Right Arithmetically destination byte

RRA.B dst or RRA.W dst

MSB - MSB - MSB-1. —...LSB+1 — LSB —-C

The destination operand is shifted right arithmetically by one bit position as
shown in Figure 4-40. The MSB retains its value (sign). RRA operates equal to
a signed division by 2. The MSB is retained and shifted into the MSB-1. The
LSB+1 is shifted into the LSB. The previous LSB is shifted into the carry bit C.

N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5
The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 4-40. Rotate Right Arithmetically RRA.B and RRA.W

19 15 7 0

OOOOOOOOOOOOTMSB——’LSBW

| E—

19 15 0

0 0 O Oy MSB LSBW
]

v

4-100 16-Bit MSP430X CPU

RRC[.W]
RRC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Rotate Right through carry destination word
Rotate Right through carry destination byte

RRC dst or RRC.W dst
RRC.B dst

C ->MSB - MSB-1 — ...LSB+1 - LSB - C

The destination operand is shifted right by one bit position as shown in
Figure 4-41. The carry bit C is shifted into the MSB and the LSB is shifted into
the carry bit C.

N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE ; EDE = EDE » 1 + 8000h

Figure 4-41. Rotate Right through Carry RRC.B and RRC.W

19 15 7 0
0 0 0 0JO 0 0O O O O OfMSB|————*| LSB
4]
19 15 0

v

OOOOMSB LSB
~ |

16-Bit MSP430X CPU 4-101

MSP430 Instructions

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

I
Note: Borrow Implementation.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

4-102 16-Bit MSP430X CPU

*SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

MSP430 Instructions

Set carry bit

SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6—-0Fh
; R5 =03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
;R6=R6+R5+1
; R6 = 0150h

16-Bit MSP430X CPU 4-103

MSP430 Instructions

*SETN
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set negative bit

SETN

1->N

BIS #4,SR

The negative bit (N) is set.

N: Set

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

4-104 16-Bit MSP430X CPU

MSP430 Instructions

* SETZ Set zero bit
Syntax SETZ
Operation 1->Z
Emulation BIS #2,SR
Description The zero bit (2) is set.
Status Bits N: Not affected

Z: Set

C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

16-Bit MSP430X CPU 4-105

MSP430 Instructions

SUBL.W]
SUB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Subtract source word from destination word
Subtract source byte from destination byte

SUB src,dst or SUB.W src,dst
SUB.B src,dst

(.not.src) + 1 +dst > dst or dst- src — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected, the result is written to the destination operand.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7.
Afterwards, if R7 contains zero, jump to label TONI. R5 is then
auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from byte R12 points to. The address of CNT is within
PC + 32 K. The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

4-106 16-Bit MSP430X CPU

SUBC[.W]
SUBC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Subtract source word with carry from destination word
Subtract source byte with carry from destination byte

SUBC src,dst or SUBC.W src,dst
SUBC.B src,dst

(.not.src) + C+dst »>dst or dst-(src-1)+C — dst

The source operand is subtracted from the destination operand. This is done
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Used for 32, 48, and 64-bit operands.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from R5 with the carry from the previous
instruction. R5.19:16 =0

SUBC.W #7654h,R5 : Subtract 7654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 points to the next 48-bit number
afterwards. The address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

16-Bit MSP430X CPU 4-107

MSP430 Instructions

SWPB Swap bytes

Syntax SWPB dst

Operation dst.15:8 < dst.7:0

Description The high and the low byte of the operand are exchanged. PC.19:16 bits are
cleared in register mode.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Exchange the bytes of RAM word EDE (lower 64 K).
MOV #1234h,&EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE

Figure 4-42. Swap Bytes in Memory

Before SWPB

15 8 7 0
High Byte Low Byte
After SWPB
15 8 7 0
Low Byte High Byte

Figure 4-43. Swap Bytes in a Register

Before SWPB

19 16 15 8 7 0
X High Byte Low Byte
After SWPB
19 16 15 8 7 0
0 .. 0 Low Byte High Byte

4-108 16-Bit MSP430X CPU

SXT
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Extend sign
SXT dst

dst.7 — dst.15:8, dst.7 — dst.19:8 (Register Mode)

Register Mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8

Rdst.7 = 0: Rdst.19:8 = 000h afterwards.
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards.

Other Modes: the sign of the low byte of the operand is extended into the high
byte.

dst.7 = 0: high byte = 00h afterwards.

dst.7 = 1: high byte = FFh afterwards.

N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the
16-bit signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

The signed 8-bit data in EDE (PC £32 K) is sign extended and added to the
20-bit data in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

16-Bit MSP430X CPU 4-109

MSP430 Instructions

*TSTL.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

Jz R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

4-110 16-Bit MSP430X CPU

XORL.W]
XOR.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Exclusive OR source word with destination word
Exclusive OR source byte with destination byte

XOR dst or XOR.W dst
XOR.B dst

src .xor. dst — dst

The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
content of the destination is lost.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. 2)
V: Set if both operands are negative before execution, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Toggle bits in word CNTR (16-bit data) with information (bit = 1) in
address-word TONI. Both operands are located in lower 64 K.

XOR &TONL&CNTR ; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.
R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE. R7.19:8 = 0. The address of EDE is within PC £ 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is Oh

16-Bit MSP430X CPU 4-111

Extended Instructions

4.6.3 Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Some MSP430X instructions require an additional word
of op-code called the extension word. All addresses, indexes, and immediate
numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following
pages. For MSP430X instructions that do not require the extension word, it is
noted in the instruction description.

4-112 16-Bit MSP430X CPU

* ADCX.A
* ADCX.[W]
* ADCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Add carry to destination address-word
Add carry to destination word
Add carry to destination byte

ADCX.A dst
ADCX dst or ADCXW dst
ADCX.B dst

dst + C —> dst

ADDCX.A #0,dst
ADDCX #0,dst
ADDCX.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R183, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

16-Bit MSP430X CPU 4-113

Extended Instructions

ADDX.A
ADDX[.W]
ADDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-114

Add source address-word to destination address-word
Add source word to destination word
Add source byte to destination byte

ADDX.A src,dst
ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

src + dst — dst

The source operand is added to the destination operand. The previous
contents of the destination are lost. Both operands can be located in the full
address space.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs)
and CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump
to label TONI is performed on a carry.

ADDX.W @R5,R6
JC TONI

; Add table word to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDX.B @R5+,R6
JNC TONI

; Add table byte to R6. R5 + 1. R6: 000xxh

; Jump if no carry

; Carry occurred

Note: Use ADDA for the following two cases for better code density and
execution.

ADDX.A
ADDX.A

Rsrc,Rdst or
#imm20,Rdst

16-Bit MSP430X CPU

ADDCX.A
ADDCX[.W]
ADDCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Add source address-word and carry to destination address-word
Add source word and carry to destination word
Add source byte and carry to destination byte

ADDCX.A src,dst
ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

src + dst + C — dst

The source operand and the carry bit C are added to the destination operand.
The previous contents of the destination are lost. Both operands may be
located in the full address space.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Constant 15 and the carry of the previous instruction are added to the 20-bit
counter CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to R6.
The jump to label TONI is performed on a carry.

ADDCX.W @R5,R6
JC TONI

; Add table word + C to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1.

ADDCX.B @R5+,R6
JNC TONI

; Add table byte + C to R6. R5 + 1
; Jump if no carry
; Carry occurred

16-Bit MSP430X CPU 4-115

Extended Instructions

ANDX.A
ANDX[.W]
ANDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Logical AND of source address-word with destination address-word
Logical AND of source word with destination word
Logical AND of source byte with destination byte

ANDX.A src,dst
ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

src .and. dst — dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. 2)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the
address-word TOM located in two words. If the result is zero, a branch is taken
to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0

; Result> 0
or shorter:
ANDX.A #AAA55h, TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result 0

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6.
R6.19:8 = 0. The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

4-116 16-Bit MSP430X CPU

BICX.A
BICX[.W]
BICX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Clear bits set in source address-word in destination address-word
Clear bits set in source word in destination word
Clear bits set in source byte in destination byte

BICX.A src,dst
BICX src,dst or BICX.W src,dst
BICX.B src,dst

(.not. src) .and. dst — dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected. Both operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16=0

BICX.W @R5,R7 ; Clear bits in R7

A table byte pointed to by R5 (20-bit address) is used to clear bits in output
Port1.

BICX.B @R5,&P10UT ; Clear 1/O port P1 bits

16-Bit MSP430X CPU 4-117

Extended Instructions

BISX.A Set bits set in source address-word in destination address-word
BISX[.W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte
Syntax BISX.A src,dst
BISX src,dst or BISX.W src,dst
BISX.B src,dst
Operation src .or. dst — dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

Status Bits N: Not affected
Z Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 16 and 15 of R5 (20-bit data) are set to one.
BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.
BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.
BISX.B @R5,&P10UT ; Set I/O port P1 bits

4-118 16-Bit MSP430X CPU

BITX.A
BITX[.W]
BITX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Test bits set in source address-word in destination address-word
Test bits set in source word in destination word
Test bits set in source byte in destination byte

BITX.A src,dst
BITX src,dst or BITX.W src,dst
BITX.B src,dst

src .and. dst

The source operand and the destination operand are logically ANDed. The
result affects only the status bits. Both operands may be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. 2)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5
JNZ TONI

; Test R5.16:15 bits
; At least one bit is set
; Both are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set.

BITX.W @R5,R7
JC TONI

; Test bits in R7: C = .not.Z
; At least one is set
; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1.
Jump to label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN
JNC TONI

; Test input P1 bits. R5 + 1
; No corresponding input bit is set
; At least one bit is set

16-Bit MSP430X CPU 4-119

Extended Instructions

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst
CLRX dst or CLRX.W dst
CLRX.B dst
Operation 0 —> dst
Emulation MOVX.A #0,dst
MOVX #0,dst
MOVX.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM address-word TONI is cleared.
CLRX.A TONI ; 0 —> TONI

4-120 16-Bit MSP430X CPU

CMPX.A
CMPX[.W]
CMPX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Compare source address-word and destination address-word
Compare source word and destination word
Compare source byte and destination byte

CMPX.A src,dst
CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

(.not. src) + 1 + dst or dst - src

The source operand is subtracted from the destination operand by adding the
1’s complement of the source + 1 to the destination. The result affects only the
status bits. Both operands may be located in the full address space.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src = dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive
destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE
equals the constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h
JEQ TONI ; EDE contains 18000h
; Not equal

A table word pointed to by R5 (20-bit address) is compared with R7. Jump to
label TONI if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI ; R7 < @R5
: R7 >= @R5
A table byte pointed to by R5 (20-bit address) is compared to the input in I/O

Port1. Jump to label TONI if the values are equal. The next table byte is
addressed.

CMPX.B @R5+,&P1IN
JEQ TONI

; Compare P1 bits with table. R5 + 1
; Equal contents
; Not equal

Note: Use CMPA for the following two cases for better density and execution.
CMPA Rsrc,Rdst or
CMPA #imm20,Rdst

16-Bit MSP430X CPU 4-121

Extended Instructions

* DADCX.A
* DADCX[.W]
* DADCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Add carry decimally to destination address-word
Add carry decimally to destination word
Add carry decimally to destination byte

DADCX.A dst
DADCX dst or DADCX.W src,dst
DADCX.B dst

dst + C —> dst (decimally)

DADDX.A #0,dst
DADDX #0,dst
DADDX.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.

C: Set if the BCD result is too large (address-word > 99999h,
word > 9999h, byte > 99h), reset otherwise.

V: Undefined.

OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

4-122 16-Bit MSP430X CPU

DADDX.A
DADDX[.W]
DADDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Add source address-word and carry decimally to destination address-word
Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte

DADDX.A src,dst
DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

src + dst + C — dst (decimally)

The source operand and the destination operand are treated as two (.B), four
(.\W), or five (.A) binary coded decimals (BCD) with positive signs. The source
operand and the carry bit C are added decimally to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost. The result is not defined for non-BCD numbers. Both operands may
be located in the full address space.

N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.

C: Set if the BCD result is too large (address-word > 99999h,
word > 9999h, byte > 99h), reset otherwise.

V: Undefined.

OSCOFF, CPUOFF, and GIE are not affected.

Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two
words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5
(BCD+2 and R5 contain the MSDs).

CLRC ; Clear carry

DADDX.W BCD,R4 ; Add LSDs

DADDX.W BCD+2,R5 ; Add MSDs with carry

JC OVERFLOW ; Result >99999999: go to error routine
; Result ok

The two-digit BCD number contained in 20-bit address BCD is added
decimally to a two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.
: R4: 000ddh

16-Bit MSP430X CPU 4-123

Extended Instructions

*DECX.A
* DECX[.W]
* DECX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

4-124

Decrement destination address-word
Decrement destination word
Decrement destination byte

DECX dst
DECX dst
DECX.B dst
dst -1 —> dst

SUBX.A #1,dst
SUBX #1,dst
SUBX.B #1,dst

or DECXW dst

The destination operand is decremented by one. The original contents are

lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise

C: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.

RAM address-word TONI is decremented by 1

DECX.A TONI

16-Bit MSP430X CPU

: Decrement TONI

Extended Instructions

* DECDX.A Double-decrement destination address-word

* DECDX[.W] Double-decrement destination word

* DECDX.B Double-decrement destination byte

Syntax DECDX.A dst
DECDX dst or DECDX.W dst
DECDX.B dst

Operation dst — 2 —> dst

Emulation SUBX.A #2,dst

SUBX #2,dst
SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 2.
DECDX.A TONI ; Decrement TONI by two

16-Bit MSP430X CPU 4-125

Extended Instructions

* INCX.A
* INCX[.W]
*INCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Increment destination address-word
Increment destination word
Increment destination byte

INCX.A dst

INCX dst or INCX.W dst
INCX.B dst

dst + 1 —> dst

ADDX.A #1,dst
ADDX #1,dst
ADDX.B #1,dst

The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V. Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
RAM address-word TONI is incremented by 1.

INCX.A TONI ; Increment TONI (20-bits)

4-126 16-Bit MSP430X CPU

* INCDX.A
* INCDX[.W]
* INCDX.B

Syntax

Operation

Emulation

Example

Status Bits

Mode Bits

Example

Extended Instructions

Double-increment destination address-word
Double-increment destination word
Double-increment destination byte

INCDX.A dst

INCDX dst or INCDX.W dst
INCDX.B dst

dst + 2 —> dst

ADDX.A #2,dst
ADDX #2,dst
ADDX.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFEh, reset otherwise
Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFFEh or OFFFFFh, reset otherwise
Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
RAM byte LEO is incremented by two; PC points to upper memory

INCDX.B LEO ; Increment LEO by two

16-Bit MSP430X CPU 4-127

Extended Instructions

* INVX.A
* INVX[.W]
* INVX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Invert destination
Invert destination
Invert destination

INVX.A dst
INVX dst or INVX.W dst
INVX.B dst

.NOT.dst —> dst

XORX.A #OFFFFFh,dst
XORX #OFFFFh,dst
XORX.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

20-bit content of R5 is negated (twos complement).
INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Content of memory byte LEO is negated. PC is pointing to upper memory

INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

4-128 16-Bit MSP430X CPU

MOVX.A
MOVX[.W]
MOVX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Loop

Example

Loop

Extended Instructions

Move source address-word to destination address-word
Move source word to destination word
Move source byte to destination byte

MOVX.A src,dst
MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

src — dst

The source operand is copied to the destination. The source operand is not
affected. Both operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Move a 20-bit constant 18000h to absolute address-word EDE.

MOVX.A #018000h,&EDE ; Move 18000h to EDE

The contents of table EDE (word data, 20-bit addresses) are copied to table
TOM. The length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
; Copy completed

The contents of table EDE (byte data, 20-bit addresses) are copied to table
TOM. The length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter
MOVX.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1
DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
; Copy completed

16-Bit MSP430X CPU 4-129

Extended Instructions

4-130

Ten of the 28 possible addressing combinations of the MOVX.A instruction can
use the MOVA instruction. This saves two bytes and code cycles. Examples
for the addressing combinations are:

MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A

Rsrc,Rdst
#imm20,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,&abs20

MOVA
MOVA
MOVA
MOVA
MOVA
MOVA

Rsrc,Rdst ; Reg/Reg
#imm20,Rdst ; Immediate/Reg
&abs20,Rdst ; Absolute/Reg
@Rsrc,Rdst ; Indirect/Reg
@Rsrc+,Rdst ; Indirect,Auto/Reg
Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for
the addressing.

MOVX.A
MOVX.A
MOVX.A
MOVX.A

16-Bit MSP430X CPU

z20(Rsrc),Rdst
Rsrc,z20(Rdst)
symb20,Rdst
Rsrc,symb20

MOVA
MOVA
MOVA
MOVA

z16(Rsrc),Rdst ; Indexed/Reg
Rsrc,z16(Rdst) ; Reg/Indexed
symb16,Rdst ; Symbolic/Reg
Rsrc,symb16 ; Reg/Symbolic

POPM.A
POPM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Restore n CPU registers (20-bit data) from the stack
Restore n CPU registers (16-bit data) from the stack

POPM.A #n,Rdst 1<n<16
POPM.W #n,Rdst or POPM #n,Rdst 1<n<16

POPM.A: Restore the register values from stack to the specified CPU
registers. The stack pointer SP is incremented by four for each register
restored from stack. The 20-bit values from stack (2 words per register) are
restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU
registers. The stack pointer SP is incremented by two for each register
restored from stack. The 16-bit values from stack (one word per register) are
restored to the CPU registers.

Note : This does not use the extension word.

POPM.A: The CPU registers pushed on the stack are moved to the extended
CPU registers, starting with the CPU register (Rdst - n + 1). The stack pointer
is incremented by (n x 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the
CPU registers, starting with CPU register (Rdst - n + 1). The stack pointer is
incremented by (n x 2) after the instruction. The MSBs (Rdst.19:16) of the
restored CPU registers are cleared

Not affected, except SR is included in the operation

OSCOFF, CPUOFF, and GIE are not affected, except SR is included in the op-
eration.

Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5R13 ; Restore R9, R10, R11, R12, R13
Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

16-Bit MSP430X CPU 4-131

Extended Instructions

PUSHM.A
PUSHM[.W]
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Save n CPU registers (20-bit data) on the stack
Save n CPU registers (16-bit words) on the stack

PUSHM.A #n,Rdst 1<n<16
PUSHM.W #n,Rdst or PUSHM #n,Rdst 1<n<16

PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer
(SP) is decremented by four for each register stored on the stack. The MSBs
are stored first (higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack
pointer is decremented by two for each register stored on the stack.

PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on
the stack. The stack pointer is decremented by (n x 4) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the
stack. The stack pointer is decremented by (n x 2) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

Note : This instruction does not use the extension word.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9
Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

4-132 16-Bit MSP430X CPU

* POPX.A
* POPX[.W]
* POPX.B

Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Example

Extended Instructions

Restore single address-word from the stack
Restore single word from the stack
Restore single byte from the stack

POPX.A dst
POPX dst or POPX.W dst
POPX.B dst

Restore the 8/16/20-bit value from the stack to the destination. 20-bit
addresses are possible. The stack pointer SP is incremented by two (byte and
word operands) and by four (address-word operand).

MOVX(.B,.A) @SP+,dst

The item on TOS is written to the destination operand. Register Mode, Indexed
Mode, Symbolic Mode, and Absolute Mode are possible. The stack pointer is
incremented by two or four.

Note: the stack pointer is incremented by two also for byte operations.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Write the 16-bit value on TOS to the 20-bit address &EDE.

POPX.W &EDE ; Write word to address EDE

Write the 20-bit value on TOS to R9.

POPX.A R9 ; Write address-word to R9

16-Bit MSP430X CPU 4-133

Extended Instructions

PUSHX.A
PUSHX[.W]
PUSHX.B

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Save a single address-word on the stack
Save a single word on the stack
Save a single byte on the stack

PUSHX.A src
PUSHX src or PUSHX.W src
PUSHX.B src

Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses
are possible. The stack pointer (SP) is decremented by two (byte and word
operands) or by four (address-word operand) before the write operation.

The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All
seven addressing modes are possible for the source operand.

Note : This instruction does not use the extension word.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Save the 20-bit value in R9 on the stack.

PUSHX.A R9 : Save address-word in R9

4-134 16-Bit MSP430X CPU

RLAM.A
RLAM[.W]

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Rotate Left Arithmetically the 20-bit CPU register content
Rotate Left Arithmetically the 16-bit CPU register content

RLAM.A #n,Rdst 1<n<4
RLAM.W #n,Rdst or RLAM #n,Rdst 1<n<4

C < MSB <~ MSB-1LSB+1 < LSB« 0

The destination operand is shifted arithmetically left one, two, three, or four
positions as shown in Figure 4-44. RLAM works as a multiplication (signed
and unsigned) with 2, 4, 8, or 16. The word instruction RLAM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19=0
.W: Rdst.15 = 1, reset if Rdst.15=0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3
(n=4)

V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit operand in R5 is shifted left by three positions. It operates equal to
an arithmetic multiplication by 8.

RLAM.A #3,R5 ;R5=R5x8

Figure 4-44. Rotate Left Arithmetically RLAM[.W] and RLAM.A

19 16 15 0
0000 MSB »| LSB [« 0
|
19 0

v

LSB & o

16-Bit MSP430X CPU 4-135

Extended Instructions

* RLAX.A Rotate left arithmetically address-word

* RLAX[.W] Rotate left arithmetically word

* RLAX.B Rotate left arithmetically byte

Syntax RLAX.B dst
RLAX dst or RLAX.W dst
RLAX.B dst

Operation C <- MSB <- MSB-1 LSB+1 <-LSB <-0

Emulation ADDX.A dst,dst

ADDX dst,dst
ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-45.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX
instruction acts as a signed multiplication by 2.

Figure 4-45. Destination Operand—Arithmetic Shift Left
MSB 0

—————————————————— o

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 040000h < dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

Status Bits

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is multiplied by 2.

RLAX.A R7 ; Shift left R7 (20-bit)

4-136 16-Bit MSP430X CPU

* RLCX.A
* RLCX[.W]
* RLCX.B

Syntax

Operation

Emulation

Description

Extended Instructions

Rotate left through carry address-word
Rotate left through carry word
Rotate left through carry byte

RLCX.A dst
RLCX dst or RLCX.W dst
RLCX.B dst

C <- MSB <- MSB-1 LSB+1<-LSB<-C

ADDCX.A dst,dst
ADDCX dst,dst
ADDCX.B dst,dst

The destination operand is shifted left one position as shown in Figure 4-46.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4-46. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

MSB 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 040000h < dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ;(R5x2)+C->R5

The RAM byte LEO is shifted left one position. PC is pointing to upper memory
RLCX.B LEO ; RAM(LEO) x 2 + C —> RAM(LEOQ)

16-Bit MSP430X CPU 4-137

Extended Instructions

RRAM.A
RRAM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Rotate Right Arithmetically the 20-bit CPU register content
Rotate Right Arithmetically the 16-bit CPU register content

RRAM.A #n,Rdst 1<n<4
RRAM.W #n,Rdst or RRAM #n,Rdst 1<n<4

MSB - MSB — MSB-1LSB+1 - LSB - C

The destination operand is shifted right arithmetically by one, two, three, or
four bit positions as shown in Figure 4-47. The MSB retains its value (sign).
RRAM operates equal to a signed division by 2/4/8/16. The MSB is retained
and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is
shifted into the carry bit C. The word instruction RRAM.W clears the bits
Rdst.19:16.

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19 =0
.W: Rdst.15 =1, reset if Rdst.15=0

Z Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3
(n=4)

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5
The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) x R15

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15%x 0.5 -> R15

ADDX.A @SP+,R15 ; R15x0.5+R15=1.5%xR15-> R15
RRAM.A #1,R15 ; (1.5 xR15) x 0.5 =0.75 x R15 -> R15

Figure 4-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

19 16 15 0

0000 [MSB LSB W

19 0

”[MSB LSB W

v

v

4-138 16-Bit MSP430X CPU

Extended Instructions

RRAX.A Rotate Right Arithmetically the 20-bit operand
RRAX[.W] Rotate Right Arithmetically the 16-bit operand
RRAX.B Rotate Right Arithmetically the 8-bit operand
Syntax RRAX.A Rdst

RRAX.W Rdst
RRAX Rdst
RRAX.B Rdst

RRAX.A dst
RRAX.W dst or RRAX dst
RRAX.B dst
Operation MSB —» MSB — MSB-1. ... LSB+1 - LSB —» C
Description Register Mode for the destination: the destination operand is shifted right by

one bit position as shown in Figure 4-48. The MSB retains its value (sign). The
word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction
RRAX.B clears the bits Rdst.19:8. The MSB retains its value (sign), the LSB is
shifted into the carry bit. RRAX here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right
arithmetically by one bit position as shown in Figure 4-49. The MSB retains
its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal
to a signed division by 2. All addressing modes — with the exception of the
Immediate Mode — are possible in the full memory.

Status Bits N: Set if result is negative
A: dst.19 =1, resetif dst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7 =1, resetif dst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

16-Bit MSP430X CPU 4-139

Extended Instructions

Example The signed 20-bit number in R5 is shifted arithmetically right four positions.
RPT #4
RRAX.A R5 ; R5/16 —> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.
RRAX.B &EDE ; EDE/2 -> EDE

Figure 4-48. Rotate Right Arithmetically RRAX(.B,.A). Register Mode
19 8 7 0

0 - OﬂSB—’LSB_

19 16 15 0
+ 0000 ﬂSB » | LsB |-
19 0

"E MSB » | LSB |

Figure 4-49. Rotate Right Arithmetically RRAX(.B,.A). Non-Register Mode
7 0

15 0
+ |_>—MISB y | LsB _‘
31 20
o | - 0
19 0
y | LsB |

RS

4-140 16-Bit MSP430X CPU

RRCM.A
RRCM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Rotate Right through carry the 20-bit CPU register content
Rotate Right through carry the 16-bit CPU register content

RRCM.A #n,Rdst 1<n<4
RRCM.W #n,Rdst or RRCM #n,Rdst 1<n<4

C > MSB - MSB-1 — ...LSB+1 - LSB - C

The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4-50. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. The word instruction RRCM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19=0
.W: Rdst.15 = 1, reset if Rdst.15=0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3
(n=4)

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The address-word in R5 is shifted right by three positions. The MSB-2 is
loaded with 1.

SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h

The word in R6 is shifted right by two positions. The MSB is loaded with the
LSB. The MSB-1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6=R6»2. R6.19:16 =0

Figure 4-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

19 1615 0
0 MSB »| LsB
: |
19 0

v

A =

16-Bit MSP430X CPU 4-141

Extended Instructions

RRCX.A
RRCX[.W]
RRCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Rotate Right through carry the 20-bit operand
Rotate Right through carry the 16-bit operand
Rotate Right through carry the 8-bit operand

RRCX.A Rdst

RRCX.W Rdst

RRCX Rdst

RRCX.B Rdst

RRCX.A dst

RRCX.W dst or RRCX dst
RRCX.B dst

C > MSB - MSB-1 —» ...LSB+1 - LSB - C

Register Mode for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4-51. The word instruction RRCX.W clears
the bits Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The
carry bit C is shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4-52. The carry bit C is shifted into the
MSB, the LSB is shifted into the carry bit. All addressing modes — with the ex-
ception of the Immediate Mode — are possible in the full memory.

N: Set if result is negative
A: dst.19 =1, resetif dst.19=0
W: dst.15=1, resetif dst.15=0
.B: dst.7 =1, resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

4-142 16-Bit MSP430X CPU

Extended Instructions

Example The 20-bit operand at address EDE is shifted right by one position. The MSB is
loaded with 1.
SETC ; Prepare carry for MSB
RRCX.A EDE ; EDE = EDE » 1 + 80000h
Example The word in R6 is shifted right by twelve positions.
RPT #12
RRCX.W R6 ;R6=R6 » 12. R6.19:16 =0

Figure 4-51. Rotate Right Through Carry RRCX(.B,.A). Register Mode

19 8 7 0
0 e 0 |mss | ——| 8 |
T
19 16 15 0
—> 0000 MSB > LSB |—
T
19 0

v

B =}

Figure 4-52. Rotate Right Through Carry RRCX(.B,.A). Non-Register Mode

7 0
FE) MSB [— | LsB _‘
15 0
F' CI MSB » | LsB _‘
31 20
o |- 0
19 0
F vsB R

LSB —‘

16-Bit MSP430X CPU 4-143

Extended Instructions

RRUM.A
RRUM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Rotate Right Unsigned the 20-bit CPU register content
Rotate Right Unsigned the 16-bit CPU register content

RRUM.A #n,Rdst 1<n<4
RRUM.W #n,Rdst or RRUM #n,Rdst 1<n<4

0 —»MSB—->MSB-1.—-...LSB+1 ->LSB—-C

The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4-53. Zero is shifted into the MSB, the LSB is shifted into
the carry bit. RRUM works like an unsigned division by 2, 4, 8, or 16. The word
instruction RRUM.W clears the bits Rdst.19:16.

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19=0
.W: Rdst.15 =1, reset if Rdst.15=0

Z Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3
(n=4)

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 =R5 » 4. R5/16
The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15=0

Figure 4-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

19 16 15 0
0000 MSB *| LSB |+
0
19 0

LSB

v

*04 MSB

4-144 16-Bit MSP430X CPU

Extended Instructions

RRUX.A Rotate Right unsigned the 20-bit operand
RRUX[.W] Rotate Right unsigned the 16-bit operand
RRUX.B Rotate Right unsigned the 8-bit operand
Syntax RRUX.A Rdst
RRUX.W Rdst
RRUX Rdst
RRUX.B Rdst
Operation C=0 - MSB - MSB-1 — ... LSB+1 - LSB - C
Description RRUX is valid for register Mode only: the destination operand is shifted right by

one bit position as shown in Figure 4-54. The word instruction RRUX.W clears
the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8.
Zero is shifted into the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
A: dst.19 =1, reset if dst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7 =1, resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The word in R6 is shifted right by twelve positions.
RPT #12
RRUX.W R6 :R6=R6»12. R6.19:16 =0

Figure 4-54. Rotate Right Unsigned RRUX(.B,.A). Register Mode

19 8 7 0
0 mmmm e 0 |msB [————| s
0 “
19 1615 0
+ 0000 | MsB » [LSB
0 “
19 0

v

Foa MSB LSB —‘

16-Bit MSP430X CPU 4-145

Extended Instructions

* SBCX.A
* SBCX[.W]
* SBCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Subtract source and borrow/.NOT. carry from destination address-word
Subtract source and borrow/.NOT. carry from destination word
Subtract source and borrow/.NOT. carry from destination byte

SBCX.A dst
SBCX dst or SBCX.W dst
SBCX.B dst

dst + OFFFFFh + C —> dst
dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBCX.A #0,dst
SUBCX #0,dst
SUBCX.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

I
Note: Borrow Implementation.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

4-146 16-Bit MSP430X CPU

SUBX.A
SUBX[.W]
SUBX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Subtract source address-word from destination address-word
Subtract source word from destination word
Subtract source byte from destination byte

SUBX.A src,dst
SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

(.not.src) + 1 + dst > dst or dst-src — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected. The result is written to the destination operand. Both
operands may be located in the full address space.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src = dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to
label TONI if R7 contains zero after the instruction. R5 is auto-incremented by
2.R7.19:16 =0

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2
Jz TONI ; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from the byte R12 points to in the full address space.
Address of CNT is within PC + 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.
SUBX.A Rsrc,Rdst or
SUBX.A #imm20,Rdst

16-Bit MSP430X CPU 4-147

Extended Instructions

SUBCX.A
SUBCX[.W]
SUBCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-148

Subtract source address-word with carry from destination address-word
Subtract source word with carry from destination word
Subtract source byte with carry from destination byte

SUBCX.A src,dst
SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

(.not. src) + C + dst > dst or dst-(src-1)+ C — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Both operands may be located in the full address space.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit constant 87654h is subtracted from R5 with the carry from the
previous instruction.

SUBCX.A #87654h,R5 : Subtract 87654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the
next 48-bit number.

SUBX.W @R5+,0(R7)
SUBCX.W @R5+,2(R7)
SUBCX.W @R5+,4(R7)

; Subtract LSBs. R5 + 2
; Subtract MIDs with C. R5 + 2
: Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

16-Bit MSP430X CPU

SWPBX.A
SWPBX[.W]

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Extended Instructions

Swap bytes of lower word
Swap bytes of word

SWPBX.A dst
SWPBX.W dst or SWPBX dst

dst.15:8 < dst.7:0

Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is
used, Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are
cleared.

Other Modes: When the .A extension is used, bits 31:20 of the destination
address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped
with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits
7:0 of the addressed word.

Not affected
OSCOFF, CPUOFF, and GIE are not affected.

Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h,&EDE ; 23456h —> EDE
SWPBX.A EDE ; 25634h —> EDE

Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h —> R5
SWPBX.W R5 ; 05634h —> R5

Figure 4-55. Swap Bytes SWPBX.A Register Mode

Before SWPBX.A

19 16 15 8 7 0
X High Byte Low Byte

After SWPBX.A

19 16 15 8 7 0
X Low Byte High Byte

16-Bit MSP430X CPU 4-149

Extended Instructions

Figure 4-56. Swap Bytes SWPBX.A In Memory

Before SWPBX.A

31 20 19 16 15 8 7

X X High Byte Low Byte
After SWPBX.A
31 20 19 16 15 8 7

0 X Low Byte High Byte

Figure 4-57. Swap Bytes SWPBX|.W] Register Mode

Before SWPBX
19 16 15 8 7
X High Byte Low Byte
After SWPBX
19 16 15 8 7
0 Low Byte High Byte

Figure 4-58. Swap Bytes SWPBX[.W] In Memory

Before SWPBX

15 8 7
High Byte Low Byte
After SWPBX
15 8 7
Low Byte High Byte

4-150 16-Bit MSP430X CPU

SXTX.A
SXTX[.W]

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Extend sign of lower byte to address-word
Extend sign of lower byte to word

SXTX.A dst
SXTX.W dst or SXTX dst

dst.7 — dst.15:8, Rdst.7 — Rdst.19:8 (Register Mode)

Register Mode:
The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.

Other Modes:
SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.

SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into
dst.15:8.

N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.2)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits
31:20 located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE —> EDE+2/EDE

Figure 4-59. Sign Extend SXTX.A

SXTX.A Rdst
19 1615 876 0
< S
SXTX.Adst
31 2019 1615 8 76 0
o L. 0] «¢ S

16-Bit MSP430X CPU 4-151

Extended Instructions

Figure 4-60. Sign Extend SXTX[.W]

SXTX[.W] Rdst
19 16 15

P
-

SXTX[.W] dst
15

A

4-152 16-Bit MSP430X CPU

*TSTX.A
* TSTX[.W]
*TSTX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Test destination address-word
Test destination word
Test destination byte

TSTX.A dst
TSTX dst or TST.W dst
TST.B dst

dst + OFFFFFh + 1
dst + OFFFFh + 1
dst + OFFh + 1

CMPX.A #0,dst
CMPX #0,dst
CMPX.B #0,dst

The destination operand is compared with zero. The status bits are set
according to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

RAM byte LEO is tested; PC is pointing to upper memory. If it is negative,
continue at LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO

JN LEONEG ;LEO is negative

Jz LEOZERO ;LEOs zero
LEOPOS ... ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

16-Bit MSP430X CPU 4-153

Extended Instructions

XORX.A
XORX[.W]
XORX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Exclusive OR source address-word with destination address-word
Exclusive OR source word with destination word
Exclusive OR source byte with destination byte

XORX.A src,dst
XORX src,dst or XORX.W src,dst
XORX.B src,dst

src .xor. dst — dst

The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
contents of the destination are lost. Both operands may be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Toggle bits in address-word CNTR (20-bit data) with information in
address-word TONI (20-bit address).

XORX.A TONIL,&CNTR ; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 =0

Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE (20-bit address).

XORX.B EDE,R7 ; Set different bits to 1 in R7
INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.
4-154 16-Bit MSP430X CPU

Address Instructions

4.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the Register mode and the Immediate mode, except for the MOVA
instruction. Restricting the addressing modes removes the need for the
additional extension-word op-code improving code density and execution
time. The MSP430X address instructions are listed and described in the
following pages.

16-Bit MSP430X CPU 4-155

Address Instructions

ADDA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Add 20-bit source to a 20-bit destination register

ADDA Rsrc,Rdst
ADDA #imm20,Rdst

src + Rdst — Rdst

The 20-bit source operand is added to the 20-bit destination CPU register. The
previous contents of the destination are lost. The source operand is not
affected.

Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Set if result is zero, reset otherwise

Set if there is a carry from the 20-bit result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5
JC TONI ; Jump on carry
; No carry occurred

4-156 16-Bit MSP430X CPU

* BRA
Syntax
Operation

Emulation

Description

Status Bits

Mode Bits

Examples

Address Instructions

Branch to destination
BRA dst
dst - PC

MOVA dst,PC

An unconditional branch is taken to a 20-bit address anywhere in the full
address space. All seven source addressing modes can be used. The branch
instruction is an address-word instruction. If the destination address is
contained in a memory location X, it is contained in two ascending words: X
(LSBs) and (X + 2) (MSBs).

Not affected
Not affected
Not affected
Not affected

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Branch to label EDE located anywhere in the 20-bit address
space or branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AAO4h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where
X'is within £32 K. Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the
following instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute Mode: Branch to the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect
R5.

BRA R5 ; MOVA R5,PC

16-Bit MSP430X CPU 4-157

Address Instructions

Indirect Mode: Branch to the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect
R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the
words pointed to by register R5 and increment the address in R5 afterwards
by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program
execution due to access to the next address in the table pointed to by R5. Indi-
rect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC.R5 +4

Indexed Mode: Branch to the 20-bit address contained in the address pointed
to by register (R5 + X) (e.g. a table with addresses starting at X). (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within
R5 + 32 K. Indirect, indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the
following instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

4-158 16-Bit MSP430X CPU

CALLA
Syntax

Operation

Description

Status Bits

Mode Bits

Examples

Address Instructions

Call a Subroutine

CALLA dst

dst — tmp20-bit dst is evaluated and stored

SP-2 - SP

PC.19:16 — @SP updated PC with return address to TOS (MSBSs)
SP-2 — SP

PC.15:0 — @SP updated PC to TOS (LSBs)

tmp - PC saved 20-bit dst to PC

A subroutine call is made to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The call instruction is
an address-word instruction. If the destination address is contained in a
memory location X, it is contained in two ascending words: X (LSBs) and
(X + 2) (MSBs). Two words on the stack are needed for the return address.
The return is made with the instruction RETA.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC
CALLA #01AAO04h

; Start address EXEC
; Start address 01AA04h

Symbolic Mode: Call a subroutine at the 20-bit address contained in address-
es EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address
(PC + X) where X is within £32 K. Indirect addressing.

CALLA EXEC ; Start address at @ EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute
addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @ EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register
R5. Indirect R5.

CALLA R5 ; Start address at @ R5

16-Bit MSP430X CPU 4-159

Address Instructions

Indirect Mode: Call a subroutine at the 20-bit address contained in the word
pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2). Indi-
rect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address con-
tained in the words pointed to by register R5 and increment the 20-bit address
in R5 afterwards by 4. The next time the S/W flow uses R5 as a pointer, it can
alter the program execution due to access to the next word address in the table
pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the ad-
dress pointed to by register (R5 + X) e.g. a table with addresses starting at X.
(R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word ad-
dress. X is within R5 £32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @ (R5+X). z16(R5)

4-160 16-Bit MSP430X CPU

Address Instructions

*CLRA Clear 20-bit destination register

Syntax CLRA Rdst

Operation 0 —> Rdst

Emulation MOVA #0,Rdst

Description The destination register is cleared.

Status Bits Status bits are not affected.

Example The 20-bit value in R10 is cleared.
CLRA R10 ;0-—>R10

16-Bit MSP430X CPU 4-161

Address Instructions

CMPA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Compare the 20-bit source with a 20-bit destination register

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

(.not.src) + 1 + Rdst or Rdst - src

The 20-bit source operand is subtracted from the 20-bit destination CPU
register. This is made by adding the 1’s complement of the source + 1 to the
destination register. The result affects only the status bits.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive
destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit immediate operand and R6 are compared. If they are equal the
program continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R5 = 12345h
; Not equal

The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or
equal to R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 — R6)
JGE GRE ; R5>=R6
; R5 < R6

4-162 16-Bit MSP430X CPU

*DECDA
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Address Instructions

Double-decrement 20-bit destination register

DECDA Rdst

Rdst — 2 —> Rdst

SUBA #2,Rdst

The destination register is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise

C: Reset if Rdst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is decremented by 2

DECDA R5 ; Decrement R5 by two

16-Bit MSP430X CPU 4-163

Address Instructions

*INCDA Double-increment 20-bit destination register

Syntax INCDA Rdst

Operation dst + 2 —> dst

Emulation ADDA #2,Rdst

Example The destination register is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained OFFFFEh, reset otherwise
Set if Rdst contained OFFFEh, reset otherwise
Set if Rdst contained OFEh, reset otherwise

C: Set if Rdst contained OFFFFEh or OFFFFFh, reset otherwise
Set if Rdst contained OFFFEh or OFFFFh, reset otherwise
Set if Rdst contained OFEh or OFFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is incremented by 2
INCDA R5 ; Increment R5 by two

4-164 16-Bit MSP430X CPU

MOVA

Syntax

Operation

Description

Status Bits
Mode Bits

Examples

Address Instructions

Move the 20-bit source to the 20-bit destination

MOVA Rsrc,Rdst
MOVA #imm?20,Rdst
MOVA z16(Rsrc),Rdst
MOVA EDE,Rdst
MOVA &abs20,Rdst
MOVA @Rsrc,Rdst
MOVA @Rsrc+,Rdst
MOVA Rsrc,z16(Rdst)
MOVA Rsrc,&abs20

src — Rdst
Rsrc — dst

The 20-bit source operand is moved to the 20-bit destination. The source
operand is not affected. The previous content of the destination is lost.

Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Copy 20-bit value in R9 to R8.

MOVA R9,R8 : R9 -> R8
Write 20-bit immediate value 12345h to R12.

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in ad-
dresses (R9 + 100h) LSBs and (R9 + 102h) MSBs

MOVA 100h(R9),R8 ; Index: £ 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2
(MSBs) to R12.

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12.
PC index +32 K.

MOVA EDE,R12 : EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in
addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

16-Bit MSP430X CPU 4-165

Address Instructions

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by
four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2)
MSBs.

MOVA @R9+,R8 : @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination
operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and
EDE+2 (MSBs).

MOVA R13,&EDE : R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs).
PC index +32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

4-166 16-Bit MSP430X CPU

* RETA
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Address Instructions

Return from subroutine
RETA

@SP — PC.15:.0 LSBs (15:0) of saved PC to PC.15:0
SP+2 —» SP

@SP — PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP+2 —» SP

MOVA @SP+,PC

The 20-bit return address information, pushed onto the stack by a CALLA
instruction, is restored to the program counter PC. The program continues at
the address following the subroutine call. The status register bits SR.11:0 are
not affected. This allows the transfer of information with these bits.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Call a subroutine SUBR from anywhere in the 20-bit address space and return
to the address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR

; Return by RETA to here

; Save R14 and R13 (20 bit data)

; Subroutine code

POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

SUBR PUSHM.A #2 R14

16-Bit MSP430X CPU 4-167

Address Instructions

*TSTA Test 20-bit destination register
Syntax TSTA Rdst
Operation dst + OFFFFFh + 1

dst + OFFFFh + 1
dst + OFFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set
according to the result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is
positive but not zero, continue at R7POS.
TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

4-168 16-Bit MSP430X CPU

SUBA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Address Instructions

Subtract 20-bit source from 20-bit destination register

SUBA Rsrc,Rdst
SUBA #imm?20,Rdst

(.not.src) + 1 + Rdst — Rdst or Rdst - src — Rdst

The 20-bit source operand is subtracted from the 20-bit destination register.
This is made by adding the 1’s complement of the source + 1 to the
destination. The result is written to the destination register, the source is not
affected.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB (Rdst.19), reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program
continues at label TONI.

SUBA R5,R6 ; R6 — R5 -> R6
JC TONI ; Carry occurred
; No carry

16-Bit MSP430X CPU 4-169

Chapter 5

Basic Clock Module+

The basic clock module+ provides the clocks for MSP430x2xx devices. This

chapter describes the operation of the basic clock module+ of the
MSP430x2xx device family.

Topic Page
5.1 Basic Clock Module Introduction 5-2
5.2 Basic Clock Module Operation 5-4
5.3 Basic Clock Module Registers 5-13

5-1

Basic Clock Module+ Introduction

5.1

5-2

Basic Clock Module+ Introduction

The basic clock module+ supports low system cost and ultralow-power
consumption. Using three internal clock signals, the user can select the best
balance of performance and low power consumption. The basic clock
module+ can be configured to operate without any external components, with
one external resistor, with one or two external crystals, or with resonators,
under full software control.

The basic clock module+ includes three or four clock sources:

a

a
J

LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
with low-frequency watch crystals or external clock sources of 32,768-Hz.
or with standard crystals, resonators, or external clock sources in the
400-kHz to 16-MHz range.

XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 400-kHz to
16-MHz range.

DCOCLK: Internal digitally controlled oscillator (DCO).

VLOCLK: Internal very low power, low frequency oscillator with 12-kHz
typical frequency.

Three clock signals are available from the basic clock module+:

i

ACLK: Auxiliary clock. ACLK is software selectable as LFXT1CLK or
VLOCLK. ACLK is divided by 1, 2, 4, or 8. ACLK is software selectable for
individual peripheral modules.

MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. MCLK is divided by
1, 2, 4, or 8. MCLK is used by the CPU and system.

SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. SMCLK is divided
by 1, 2, 4, or 8. SMCLK is software selectable for individual peripheral
modules.

The block diagram of the basic clock module+ is shown in Figure 5-1.

Note: Device-Specific Clock Variations

All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HF mode, XT2 is not present, Rosc
is not supported.

MSP430x21x1: Internal LP/LF oscillator is not present, XT2 is not present,
Rosc is not supported.

MSP430x21x2: XT2 is not present.

MSP430x22xx: MSP430x23x0: XT2 is not present.

Basic Clock Module+

Basic Clock Module+ Introduction

Figure 5-1. Basic Clock Module+ Block Diagram

Internal
niernal | VLOGLK DIVAX
Oscillatort T T
Divider
Min. Pulse| LFXT1CLK /1/2/4/8 >
Filter ACLK
Auxillary Clock
OSCOFF LFXT1Sx
XTS
|]
XIN ov %
— LF X7
— LFOff XT10ff
XOUT ov
SELMx
i L LFXT1 Oscillator DIVMx
CPUOFF
oY
E 01 Divider

Min_. Pulse Py 10 /1/2/4/8
Filter ﬂ
/ 1 MCLK

Main System Clock

Connected only when
XT2 not present on—chip

MODx

TTTTY

Modulator

DCOR SCGO RSELx DCOx

TﬁTTTT e SELS DIVSx

T T SCGH1
DC] Min. Puls

L | bco : Divider
Generator N Filter DCOCLK 11/2/4/8

SMCLK

Sub System Clock

TNote: Device-Specific Clock Variations
All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HF mode, XT2 is not present, Rosc
is not supported.

MSP430x21x1: Internal LP/LF oscillator is not present, XT2 is not present,
Rosc is not supported.

MSP430x21x2: XT2 is not present.

MSP430x22xx, MSP430x23x0: XT2 is not present.

Basic Clock Module+ 5-3

Basic Clock Module+ Operation

5.2 Basic Clock Module+ Operation

5.2.1

5.2.2

5-4

After a PUC, MCLK and SMCLK are sourced from DCOCLK at ~1.1 MHz (see
the device-specific data sheet for parameters) and ACLK is sourced from
LFXT1CLK in LF mode with an internal load capacitance of 6pF.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable portions of the basic clock
module+. See Chapter System Resets, Interrupts and Operating Modes. The
DCOCTL, BCSCTL1, BCSCTL2, and BCSCTLS3 registers configure the basic
clock module+.

The basic clock module+ can be configured or reconfigured by software at any
time during program execution, for example:

BIS.B #RSEL2+RSEL1+RSELO, &BCSCTL1 ; Select range 7
BIS.B #DCO2+DCO1+DCOO0, &DCOCTL ; Select max DCO tap

Basic Clock Module+ Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered applications:
(O Low clock frequency for energy conservation and time keeping

(1 High clock frequency for fast reaction to events and fast burst processing
capability

1 Clock stability over operating temperature and supply voltage

The basic clock module+ addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, ACLK can be sourced from
a low-power 32,768-Hz watch crystal, providing a stable time base for the
system and low power stand-by operation, or from the internal low-frequency
oscillator when crystal-accurate time keeping is not required.. The MCLK can
be configured to operate from the on-chip DCO that can be activated when
requested by interrupt-driven events. The SMCLK can be configured to
operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the
individual clock requirements.

Internal Very Low Power, Low Frequency Oscillator

The internal very-low-power, low-frequency oscillator (VLO) provides a typical
frequency of 12kHz (see device-specific data sheet for parameters) without
requiring a crystal. VLOCLK source is selected by setting LFXT1Sx = 10 when
XTS = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current
consumption. The VLO consumes no power when not being used.

Basic Clock Module+

Basic Clock Module+ Operation

5.2.3 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS = 0). A watch crystal connects to XIN
and XOUT without any other external components. The software-selectable
XCAPXx bits configure the internally provided load capacitance for the LFXT1
crystal in LF mode. This capacitance can be selected as 1pF, 6pF, 10pF or
12.5pF typical. Additional external capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in
HF mode (XTS = 1, XCAPx = 00). The high-speed crystal or resonator
connects to XIN and XOUT and requires external capacitors on both terminals.
These capacitors should be sized according to the crystal or resonator
specifications. When LFXT1 is in HF mode, the LFXT1Sx bits select the range
of operation.

LFXT1 may be used with an external clock signal on the XIN pin in either LF
or HF mode when LFXT1Sx = 11, OSCOFF = 0 and XCAPx = 00. When used
with an external signal, the external frequency must meet the data sheet
parameters for the chosen mode. When the input frequency is below the
specified lower limit, the LFXT1OF bit may be set preventing the CPU from
being clocked with LFXT1CLK.

Software can disable LFXT1 by setting OSCOFF, if LFXT1CLK does not
source SMCLK or MCLK, as shown in Figure 5-2.

Figure 5-2. Off Signals for the LFXT1 Oscillator

XTS

ACLK_request
OSCOFF

MCLK_request
CPUOFF
SELMO
XSELMH1

XT2

SMCLK_request
SCG1

SELS

-
=S

) >

LFOff
) LEXT10ff

4>o—>

XT10ff

U
-

XT2 is an Internal Signal
XT2 = 0: Devices without XT2 oscillator
XT2 = 1: Devices with XT2 oscillator

-

| Y

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

Basic Clock Module+ 5-5

Basic Clock Module+ Operation

5.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode. The XT2Sx bits
select the range of operation of XT2. The XT20FF bit disables the XT2
oscillator if XT2CLK is not used for MCLK or SMCLK as shown in Figure 5-3.

XT2 may be used with external clock signals on the XT2IN pin when XT2Sx
= 11 and XT20FF = 0. When used with an external signal, the external
frequency must meet the data sheet parameters for XT2. When the input
frequency is below the specified lower limit, the XT20F bit may be set
preventing the CPU from being clocked with XT2CLK.

Figure 5-3. Off Signals for Oscillator XT2
XT20FF m

MCLK_request
CPUOFF

SELMO)3—: >—> XT20ff (Internal Signal)
XSELM1
SMCLK_request
SCG1
SELS . }>

5.2.5 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency
can be adjusted by software using the DCOx, MODx, and RSELX bits.

Disabling the DCO

Software can disable DCOCLK by setting SCGO when it is not used to source
SMCLK or MCLK in active mode, as shown in Figure 5-4.

Figure 5-4. On/Off Control of DCO

MCLK _request
CPUOFF
XSELM1 DCOCLK_on
P
SMCLK_request D Q 1:0n
SCGH1 0: off
SELS DCOCLK
DCOCLK —} SYNC
XT2CLK —
DCO_Gen_on
SCGOm DT’
0: off

5-6 Basic Clock Module+

Basic Clock Module+ Operation

Adjusting the DCO frequency

After a PUC, RSELx = 7 and DCOx = 3, allowing the DCO to start at a
mid-range frequency. MCLK and SMCLK are sourced from DCOCLK.
Because the CPU executes code from MCLK, which is sourced from the
fast-starting DCO, code execution typically begins from PUC in less than 2 ps.
The typical DCOx and RSELx ranges and steps are shown in Figure 5-5.

The frequency of DCOCLK is set by the following functions:

(1 The four RSELXx bits select one of sixteen nominal frequency ranges for
the DCO. These ranges are defined for an individual device in the
device-specific data sheet.

(1 The three DCOx bits divide the DCO range selected by the RSELXx bits into
8 frequency steps, separated by approximately 10%.

[d The five MODx bits, switch between the frequency selected by the DCOx
bits and the next higher frequency set by DCOx+1. When DCOx = 07h,
the MODx bits have no effect because the DCO is already at the highest
setting for the selected RSELx range.

Figure 5-5. Typical DCOx Range and RSELx Steps

foco RSEL = 15
20000 kHz __4,_,_,_1—’_’_'7
:
: RSEL=7
1000 kHz 4,_’_,_1—’_'_'7
:
! RSEL=0
100 kHz —;’_,_I_’_’_’_'i

DCO=0 DCO=1 DCO=2 DCO=3 DCO=4 DCO=5 DCO=6 DCO=7

Basic Clock Module+ 5-7

Basic Clock Module+ Operation

Each MSP430F2xx device has calibrated DCOCTL and BCSCTL1 register
settings for specific frequencies stored in information memory segment A. To
use the calibrated settings, the information is copied into the DCOCTL and
BCSCTL1 registers. The calibrated settings affect the DCOx, MODx, and
RSELXx bits, and clear all other bits, except XT20FF which remains set. The
remaining bits of BCSCTL1 can be set or cleared as needed with BIS.B or
BIC.B instructions.

; Set DCO to 1 MHz:
MOV.B &CALBC1l_ 1MHZ, &BCSCTL1l ; Set range
MOV.B &CALDCO_1MHZ, &DCOCTL ; Set DCO step + modulation

Using an External Resistor (Rgsc) for the DCO

5-8

Some MSP430F2xx devices provide the option to source the DCO current
through an external resistor, Rosc, tied to DVgc when DCOR = 1. In this case,
the DCO has the same characteristics as MSP430x1xx devices, and the
RSELXx setting is limited to 0 to 7 with the RSEL3 ignored. This option provides
an additional method to tune the DCO frequency by varying the resistor value.
See the device-specific data sheet for parameters.

Basic Clock Module+

Basic Clock Module+ Operation

5.2.6 DCO Modulator

The modulator mixes two DCO frequencies, fpco and fpco,1 to produce an
intermediate effective frequency between fpco and fpco,q1 and spread the
clock energy, reducing electromagnetic interference (EMI) The modulator
mixes fpco and fpco.1 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:

t =(32— MODx) x tpco + MODX X tpco+1

Because fpco is lower than the effective frequency and fpco,1 is higher than
the effective frequency, the error of the effective frequency integrates to zero.
It does not accumulate. The error of the effective frequency is zero every 32
DCOCLK cycles. Figure 5-6 illustrates the modulator operation.

The modulator settings and DCO control are configured with software. The
DCOCLK can be compared to a stable frequency of known value and adjusted
with the DCOx, RSELx, and MODx bits. See http://www.msp430.com for
application notes and example code on configuring the DCO.

Figure 5-6. Modulator Patterns

MODx

i L

15 s 1 e s 1 e I e e
Hpipipipipipipipipipipigipiniginh
NSRS SRS E R ERERE RN N
Lo M M

M M M

16

15

=
=

4
, [] [] [
) [[
Lower DCO Tap Frequency fpco - Upper DCO Tap Frequency fpco.1
1
0

v

Basic Clock Module+ 5-9

Basic Clock Module+ Operation

5.2.7 Basic Clock Module+ Fail-Safe Operation

The basic clock module+ incorporates an oscillator-fault fail-safe feature. This
feature detects an oscillator fault for LFXT1 and XT2 as shown in Figure 5-7
The available fault conditions are:

(1 Low-frequency oscillator fault (LFXT10OF) for LFXT1 in LF mode
[High-frequency oscillator fault (LFXT1OF) for LFXT1 in HF mode
(1 High-frequency oscillator fault (XT20F) for XT2

The crystal oscillator fault bits LFXT10F, and XT20F are set if the
corresponding crystal oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and are automatically
cleared if the enabled oscillators function normally.

The OFIFG oscillator-fault flag is set and latched at POR or when an oscillator
fault (LFXT10OF, or XT20F) is detected. When OFIFG is set, MCLK is sourced
from the DCO, and if OFIE is set, the OFIFG requests an NMI interrupt. When
the interrupt is granted, the OFIE is reset automatically. The OFIFG flag must
be cleared by software. The source of the fault can be identified by checking
the individual fault bits.

If a fault is detected for the crystal oscillator sourcing the MCLK, the MCLK is
automatically switched to the DCO for its clock source. This does not change
the SELMx bit settings. This condition must be handled by user software.

Figure 5-7. Oscillator-Fault Logic

5-10

LF_OscFault

XTS
LFXT10OF
Set OFIFG Flag

XT1_OscFault D—>

XT20F

XT2_OscFault

Basic Clock Module+

Sourcing MCLK from a Crystal

Basic Clock Module+ Operation

After a PUC, the basic clock module+ uses DCOCLK for MCLK. If required,
MCLK may be sourced from LFXT1 or XT2.

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) is:

1) Switch on the crystal oscillator and select appropriate mode

2) Clear the OFIFG flag

3) Wait at least 50 us

4) Test OFIFG, and repeat steps 1-4 until OFIFG remains cleared.

; Select

BIC.
BIS.
MOV.
L1l BIC.
MOV.
L2 DEC.

JINZ

BIT.

JINZ

BIS.

S =2 W ww =

LFXT1 (HF mode) for MCLK

#OSCOFF, SR

#XTS, &BCSCTL1
#LFXT1S0, &BCSCTL3
#OFIFG, &IFG1

#0FFh,R15
R15

L2

#OFIFG, &IFG1
L1

#SELM1+SELMO, &BCSCTL2

1

’

Turn on osc.
HF mode

1-3MHz Crystal
Clear OFIFG
Delay

Re-test OFIFG
Repeat test if needed
Select LFXTICLK

Basic Clock Module+ 5-11

Basic Clock Module+ Operation

5.2.8 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to another, the switch
is synchronized to avoid critical race conditions as shown in Figure 5-8:

1) The current clock cycle continues until the next rising edge.
2) The clock remains high until the next rising edge of the new clock.

3) The new clock source is selected and continues with a full high period.

Figure 5-8. Switch MCLK from DCOCLK to LFXT1CLK

Select
LFXT1CLK
v
DCOCLK
LFXT1CLK)
MCLK

—DCOCLK—p}— Wait for ——IFXTICLK >

LFXT1CLK >

5-12 Basic Clock Module+

5.3 Basic Clock Module+ Registers

The basic clock module+ registers are listed in Table 5-1.

Table 5-1. Basic Clock module+ Registers

Basic Clock Module+ Registers

Register Short Form Register Type Address Initial State
DCO control register DCOCTL Read/write 056h 060h with PUC
Basic clock system control 1 BCSCTLA Read/write 057h 087h with PORt
Basic clock system control 2 BCSCTL2 Read/write 058h Reset with PUC
Basic clock system control 3 BCSCTL3 Read/write 053h 005h with PUC
SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC

t Some of the register bits are also PUC initialized. See register summary.

Basic Clock Module+ 5-13

Basic Clock Module+ Registers

DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0
DCOx MODx
rw-0 rw—1 rw—1 rw-0 rw-0 rw-0 rw—0 rw-0
DCOx Bits DCO frequency select. These bits select which of the eight discrete DCO
7-5 frequencies within the range defined by the RSELXx setting is selected.
MODx Bits Modulator selection. These bits define how often the fpco.1 frequency is
4-0 used within a period of 32 DCOCLK cycles. During the remaining clock

cycles (32-MOD) the fpco frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

7 6 5 4 3 2 1 0
XT20FF xtst DIVAX RSELx
rw—(1) rw—(0) rw—(0) rw—(0) rw-0 rw-1 rw—1 rw—1
T XTS =1 is not supported in MSP430x20xx devices.
XT20FF Bit 7 XT2 off. This bit turns off the XT2 oscillator
0 XT2 is on
1 XT2 is off if it is not used for MCLK or SMCLK.
XTS Bit 6 LFXT1 mode select.
0 Low frequency mode
1 High frequency mode
DIVAX Bits Divider for ACLK
5-4 00 N
01 /2
10 /4
11 /8
RSELX Bits Range Select. Sixteen different frequency ranges are available. The lowest

3-0 frequency range is selected by setting RSELx=0. RSELS3 is ignored when

DCOR =1.

5-14 Basic Clock Module+

BCSCTL2, Basic Clock System Control Register 2

Basic Clock Module+ Registers

7 6 5 4 3 2 1 0
SELMx DIVMx SELS DIVSx DCORt
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

T Does not apply to MSP430x20xx or MSP430x21xx

SELMx

DIVMXx

SELS

DIVSx

DCOR

Bits
7-6

BitS
5-4

Bit 3

BitS
2-1

Bit 0

Select MCLK. These bits select the MCLK source.

XT2CLK when XT2 oscillator present on-chip. LFXT1CLK or VLOCLK

XT2CLK when XT2 oscillator present. LFXT1CLK or VLOCLK when

00 DCOCLK
01 DCOCLK
10
when XT2 oscillator not present on-chip.
11 LFXT1CLK or VLOCLK
Divider for MCLK
00 N
01 /2
10 /4
11 /8
Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK
1
XT2 oscillator not present
Divider for SMCLK
00 N
01 /2
10 /4
11 /8

DCO resistor select
Internal resistor
External resistor

0
1

Basic Clock Module+

5-15

Basic Clock Module+ Registers

BCSCTL3, Basic Clock System Control Register 3

7 6 5 4 3 2 1 0
XT2Sx LFXT1Sx XCAPx XT20F* LFXT10F
rw-0 rw-0 rw-0 rw-0 rw-0 rw—1 ro r—(1)

T Does not apply to MSP430x2xx, MSP430x21xx, or MSP430x22xx devices

XT2Sx Bits
7-6

LFXT1Sx Bits

5-4
XCAPx Bits

3-2
XT20F Bit 1

LFXT10F Bit 0

XT2 range select. These bits select the frequency range for XT2.
00 0.4 - 1-MHz crystal or resonator

01 1 - 3-MHz crystal or resonator

10 3 - 16-MHz crystal or resonator

11 Digital external 0.4 — 16-MHz clock source

Low-frequency clock select and LFXT1 range select. These bits select
between LFXT1 and VLO when XTS = 0, and select the frequency range
for LFXT1 when XTS = 1.

When XTS = 0:

00 32768 Hz Crystal on LFXT1

01 Reserved

10 VLOCLK (Reserved in MSP430x21x1 devices)

11 Digital external clock source

When XTS = 1 (Not applicable for MSP430x20xx devices)

00 0.4 - 1-MHz crystal or resonator

01 1 - 3-MHz crystal or resonator

10 3 - 16-MHz crystal or resonator

11 Digital external 0.4 — 16-MHz clock source

Oscillator capacitor selection. These bits select the effective capacitance
seen by the LFXT1 crystal when XTS = 0. If XTS =1 or if LFCT1Sx = 11
XCAPx should be 00.

00 ~1pF
01 ~6pF
10 ~10pF
11 ~125pF

XT2 oscillator fault
0 No fault condition present
1 Fault condition present

LFXT1 oscillator fault
0 No fault condition present
1 Fault condition present

5-16 Basic Clock Module+

Basic Clock Module+ Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
OFIE
rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV . B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits 0 This bit may be used by other modules. See device-specific data sheet.

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
OFIFG
rw—1
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other

modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV . B or CLR . B instructions.
0 No interrupt pending
1 Interrupt pending

Bits 0 This bit may be used by other modules. See device-specific data sheet.

Basic Clock Module+ 5-17

5-18 Basic Clock Module+

Chapter 6

DMA Controller

The DMA controller module transfers data from one address to another
without CPU intervention. This chapter describes the operation of the DMA
controller of the MSP430x2xx device family.

Topic Page
6.1 DMAIntroductionc.iiiiiiiiiiii i iia i 6-2
6.2 DMAOperationciiiiiiiiii it i ianranreannnnns 6-4
@9 [N B CE® a000C 6-19

6-1

DMA Introduction

6.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address
to another, without CPU intervention, across the entire address range. For
example, the DMA controller can move data from the ADC12 conversion
memory to RAM.

Devices that contain a DMA controller may have one, two, or three DMA
channels available. Therefore, depending on the number of DMA channels
available, some features described in this chapter are not applicable to all
devices.

Using the DMA controller can increase the throughput of peripheral modules.
It can also reduce system power consumption by allowing the CPU to remain
in a low-power mode without having to awaken to move data to or from a
peripheral.

The DMA controller features include:

Up to three independent transfer channels
Configurable DMA channel priorities

Requires only two MCLK clock cycles per transfer
Byte or word and mixed byte/word transfer capability
Block sizes up to 65535 bytes or words
Configurable transfer trigger selections

Selectable edge or level-triggered transfer

Four addressing modes

U o0 uUoUUodod

Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 6-1.

6-2 DMA Controller

Figure 6—1. DMA Controller Block Diagram

DMAOTSELx

DMAREQ
TACCR2_CCIFG
TBCCR2_CCIFG

USCI AQ data receive
USCI A0 data transmit
DAC12_0IFG
ADC12_IFGx
TACCRO_CCIFG
TBCCRO_CCIFG
USCI A1 data Rx
USCI A1 data Tx
Multiplier ready

USCI BO data receive
USCI B0 data transmit
DMA2IFG

DMAEO

DMAREQ
TACCR2_CCIFG
TBCCR2_CCIFG

USCI AQ data receive

USCI AQO data transmit
DAC12_0IFG
ADC12_IFGx

TACCRO_CCIFG

TBCCRO_CCIFG
USCI A1 data Rx

USCI A1 data Tx
Multiplier ready

USCI BO data receive
USCI BO data transmit

DMAOIFG
DMAEO

DMAREQ
TACCR2_CCIFG
TBCCR2_CCIFG

USCI AOQ data receive
USCI A0 data transmit
DAC12_0IFG
ADC12_IFGx
TACCRO_CCIFG

TBCCRO_CCIFG
USCI A1 data Rx

USCI A1 data Tx
Multiplier ready

USCI BO data receive
USCI BO data transmit

DMA1IFG
DMAEO

4

000

0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
11

4

000

0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
11

4

000

0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110

MA1TSELx

MA2TSEL

>

Halt

DMA Priority And Controll

—m ROUNDROBIN

(=

DMADSTINCRx
DMADSTBYTE

DMADTX

n

DMA Channel 0

DMAOSA

DMAODA

DMA0SZ

DMASRSBYTE
DMASRCINCRx

DMADSTINCRx
DMADSTBYTE

DMAEN

DMADTX

%

DMA Channel 1

DMA1SA

DMA1DA

DMA1SZ

DMASRSBYTE
DMASRCINCRx

DMADSTINCRx
DMADSTBYTE

DMAEN

DMADTXx

%

DMA Channel 2

DMA2SA

DMA2DA

DMA2SZ

DMASRSBYTE
DMASRCINCRx

—m DMAONFETCH

DMAEN

DMA Introduction

JTAG Active

NMI Interrupt Request
ENNMI

Address
Space

t» Halt CPU

11

DMA Controller 6-3

DMA Operation

6.2 DMA Operation

6.2.1

The DMA controller is configured with user software. The setup and operation
of the DMA is discussed in the following sections.

DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for
each DMA channel is independently configurable. For example, channel 0
may transfer between two fixed addresses, while channel 1 transfers between
two blocks of addresses. The addressing modes are shown in Figure 6-2. The
addressing modes are:

[0 Fixed address to fixed address
[Fixed address to block of addresses
[0 Block of addresses to fixed address

(1 Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and
DMADSTINCRXx control bits. The DMASRCINCRXx bits select if the source
address is incremented, decremented, or unchanged after each transfer. The
DMADSTINCRx bits select if the destination address is incremented,
decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte.
When transferring word-to-byte, only the lower byte of the source-word
transfers. When transferring byte-to-word, the upper byte of the
destination-word is cleared when the transfer occurs.

Figure 6-2. DMA Addressing Modes

6-4

ﬁ ﬁ
DMA DMA
Controller Address Space Controller Address Space
Fixed Address To Fixed Address Fixed Address To Block Of Addresses
ﬁ ﬁ
DMA DMA
Controller Address Space Controlier Address Space

Block Of Addresses To Fixed Address

Block Of Addresses To Block Of Addresses

DMA Controller

6.2.2 DMA Transfer Modes

DMA Operation

The DMA controller has six transfer modes selected by the DMADTX bits as
listed in Table 6-1. Each channel is individually configurable for its transfer
mode. For example, channel 0 may be configured in single transfer mode,
while channel 1 is configured for burst-block transfer mode, and channel 2
operates in repeated block mode. The transfer mode is configured
independently from the addressing mode. Any addressing mode can be used
with any transfer mode.

Two types of data can be transferred selectable by the DMAXCTL DSTBYTE
and SRCBYTE fields. The source and/or destination location can be either
byte or word data. It is also possible to transfer byte to byte, word to word or
any combination.

Table 6-1. DMA Transfer Modes

DMADTX

Transfer
Mode

Description

000

001

010, 011

100

101

110, 111

Single transfer

Block transfer

Burst-block
transfer

Repeated
single transfer

Repeated
block transfer

Repeated
burst-block
transfer

Each transfer requires a trigger. DMAEN is

automatically cleared when DMAxSZ transfers have

been made.

A complete block is transferred with one trigger.
DMAEN is automatically cleared at the end of the
block transfer.

CPU activity is interleaved with a block transfer.
DMAEN is automatically cleared at the end of the
burst-block transfer.

Each transfer requires a trigger. DMAEN remains
enabled.

A complete block is transferred with one trigger.
DMAEN remains enabled.

CPU activity is interleaved with a block transfer.
DMAEN remains enabled.

DMA Controller

6-5

DMA Operation

Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger.
The single transfer state diagram is shown in Figure 6-3.

The DMAXSZ register is used to define the number of transfers to be made.
The DMADSTINCRx and DMASRCINCRx bits select if the destination
address and the source address are incremented or decremented after each
transfer. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAxDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXxDA are incremented
or decremented after each transfer. The DMAXSZ register is decremented
after each transfer. When the DMAXSZ register decrements to zero it is
reloaded from its temporary register and the corresponding DMAIFG flag is
set. When DMADTx = 0, the DMAEN bit is cleared automatically when
DMAXSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with
DMAEN = 1, and a transfer occurs every time a trigger occurs.

6-6 DMA Controller

Figure 6-3. DMA Single Transfer State Diagram

DMAEN =0

T_Size -» DMAxSZ

DMAEN =0
DMAREQ =0

[DMADTx =0 DMAXDA — T_DestAdd
AND DMAXSZ = 0]
OR DMAEN =0
DMAABORT = 1

[ENNMI =1
AND NMI event]
OR
[DMALEVEL =1
AND Trigger = 0]

DMAABORT=0

2 x MCLK

Reset

DMAEN =0
DMAEN =1
Y

DMAXSZ — T_Size
DMAXSA — T_SourceAdd

DMA Operation

DMAREQ =0

Wait for Trigger

[+Trigger AND DMALEVEL =0]
OR

[Trigger=1 AND DMALEVEL=1]

DMAXSZ > 0
AND DMAEN = 1

Hold CPU,
Transfer one word/byte

T_Size —» DMAXSZ
DMAXSA — T_SourceAdd
DMAXDA — T_DestAdd

DMADTx = 4
AND DMAXSZ =0
AND DMAEN =1

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

DMA Controller

6-7

DMA Operation

Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one
trigger. When DMADTx = 1, the DMAEN bit is cleared after the completion of
the block transfer and must be set again before another block transfer can be
triggered. After a block transfer has been triggered, further trigger signals
occurring during the block transfer are ignored. The block transfer state
diagram is shown in Figure 6-4.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRXx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAxDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer in the block. The DMAXSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAXSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

During a block transfer, the CPU is halted until the complete block has been
transferred. The block transfer takes 2 x MCLK x DMAxSZ clock cycles to
complete. CPU execution resumes with its previous state after the block
transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion
of the block transfer. The next trigger after the completion of a repeated block
transfer triggers another block transfer.

6-8 DMA Controller

DMA Operation
Figure 6-4. DMA Block Transfer State Diagram

DMAEN =0
Reset
DMAEN = 0 DMAEN =0

DMAREQ = 0 B

T_Size — DMAXSZ DMAEN =1
_ DMAXSZ — T_Size

[DMADTXS = 1_ DMAXSA — T_SourceAdd
AND Dl\gAF;(Z=0] DMAXDA — T_DestAdd

DMAEN =0

DMAABORT = 1

DMAREQ = 0
T_Size - DMAxSZ
DMAABORT=0 DMAXSA — T_SourceAdd [€
DMAXDA —> T_DestAdd
Wait for Trigger
DMADTX = 5
AND DMAXSZ = 0
[+Trigger AND DMALEVEL = 0] AND DMAEN =1
OR
5 x MCLK [Trigger=1 AND DMALEVEL=1]

Hold CPU,
Transfer one word/byte

[ENNMI =1
AND NMI event]

OR DMAXSZ > 0

[DMALEVEL =1
Decrement DMAxSZ)

AND Trigger = 0]
Modify T_SourceAdd
Modify T_DestAdd

DMA Controller 6-9

DMA Operation

Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity
interleaved. The CPU executes 2 MCLK cycles after every four byte/word
transfers of the block resulting in 20% CPU execution capacity. After the
burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is
cleared. DMAEN must be set again before another burst-block transfer can be
triggered. After a burst-block transfer has been triggered, further trigger
signals occurring during the burst-block transfer are ignored. The burst-block
transfer state diagram is shown in Figure 6-5.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRXx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAxDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer in the block. The DMAXSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAXSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of
the burst-block transfer and no further trigger signals are required to initiate
another burst-block transfer. Another burst-block transfer begins immediately
after completion of a burst-block transfer. In this case, the transfers must be
stopped by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set.
In repeated burst-block mode the CPU executes at 20% capacity continuously
until the repeated burst-block transfer is stopped.

6-10 DMA Controller

DMA Operation

Figure 6-5. DMA Burst-Block Transfer State Diagram

DMAEN =0
Reset
DMAEN =0
DMAREQ =0 DMAEN =0
T_Size — DMAXSZ DMAEN =1
DMAXSZ — T_Size
[DMADTX = {2, 3} DMAXSA — T_SourceAdd
AND DMAXSZ = 0] DMAXDA — T_DestAdd
OR
DMAEN =0
DMAABORT = 1
DMAABORT=0
Wait for Trigger
[+Trigger AND DMALEVEL =0]
OR
2 ¥ MCLK [Trigger=1 AND DMALEVEL=1]
Hold CPU, <
Transfer one word/byte
[ENNMI = 1
AND NMI t
OR event] T_Size — DMAXSZ
DMAXxSA — T_SourceAdd
[DMALEVEL = 1 DMAXDA — T_DestAdd
AND Trigger = 0]
DMAXSZ > 0
Decrement DMAxSZ

Modify T_SourceAdd
Modify T_DestAdd

DMAXSZ > 0 AND

a multiple of 4 words/bytes
were transferred

DMAXSZ > 0

[DMADTx = {6, 7}
AND DMAXSZ = 0]

2 x MCLK

Burst State
(release CPU for 2xMCLK)

DMA Controller 6-11

DMA Operation

6.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the
DMAXTSELXx bits as described in Table 6—2.The DMAxTSELX bits should be
modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur.

When selecting the trigger, the trigger must not have already occurred, or the
transfer will not take place. For example, if the TACCR2 CCIFG bit is selected
as a trigger, and it is already set, no transfer will occur until the next time the
TACCR2 CCIFG bit is set.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge
of the trigger signal initiates the transfer. In single-transfer mode, each transfer
requires its own trigger. When using block or burst-block modes, only one
trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation,
level-sensitive triggers can only be used when external trigger DMAEO is
selected as the trigger. DMA transfers are triggered as long as the trigger
signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to
complete. If the trigger signal goes low during a block or burst-block transfer,
the DMA controller is held in its current state until the trigger goes back high
or until the DMA registers are modified by software. If the DMA registers are
not modified by software, when the trigger signal goes high again, the transfer
resumes from where it was when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3}
are recommended because the DMAEN bit is automatically reset after the
configured transfer.

Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer.
When DMAONFETCH = 0, the CPU is halted immediately and the transfer
begins when a trigger is received. When DMAONFETCH = 1, the CPU finishes
the currently executing instruction before the DMA controller halts the CPU
and the transfer begins.

Note: DMAONFETCH Must Be Used When The DMA Writes To Flash

If the DMA controller is used to write to flash memory, the DMAONFETCH
bit must be set. Otherwise, unpredictable operation can result.

6-12 DMA Controller

DMA Operation

Table 6-2. DMA Trigger Operation

DMAXTSELx Operation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011
1100

1101

A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset
when the transfer starts

A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is
automatically reset when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2
CCIFG flag will not trigger a transfer.

A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2
CCIFG flag will not trigger a transfer.

A transfer is triggered when serial interface receives new data.

Devices with USCI_AO module: A transfer is triggered when USCI_AO receives new data.
UCAORXIFG is automatically reset when the transfer starts. If UCAORXIE is set, the
UCAORXIFG flag will not trigger a transfer.

A transfer is triggered when serial interface is ready to transmit new data.

Devices with USCI_AO module:A transfer is triggered when USCI_AO is ready to transmit new
data. UCAOTXIFG is automatically reset when the transfer starts. If UCAOTXIE is set, the
UCAOTXIFG flag will not trigger a transfer.

A transfer is triggered when the DAC12_0CTL DAC12IFG flag is set. The DAC12_0CTL
DAC12IFG flag is automatically cleared when the transfer starts. If the DAC12_0CTL
DAC12IE bit is set, the DAC12_0CTL DAC12IFG flag will not trigger a transfer.

A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are
performed, the corresponding ADC12IFGx is the trigger. When sequences are used, the
ADC12IFGx for the last conversion in the sequence is the trigger. A transfer is triggered when
the conversion is completed and the ADC12IFGx is set. Setting the ADC12IFGx with software
will not trigger a transfer. All ADC12IFGx flags are automatically reset when the associated
ADC12MEMX register is accessed by the DMA controller.

A transfer is triggered when the TACCRO CCIFG flag is set. The TACCRO CCIFG flag is
automatically reset when the transfer starts. If the TACCRO CCIE bit is set, the TACCRO
CCIFG flag will not trigger a transfer.
A transfer is triggered when the TBCCRO CCIFG flag is set. The TBCCRO0 CCIFG flag is
automatically reset when the transfer starts. If the TBCCRO CCIE bit is set, the TBCCRO
CCIFG flag will not trigger a transfer.

A transfer is triggered when the UCA1RXIFG flag is set. UCATRXIFG is automatically reset
when the transfer starts. If URXIE1 is set, the UCA1RXIFG flag will not trigger a transfer.

A transfer is triggered when the UCA1TXIFG flag is set. UCA1TXIFG is automatically reset
when the transfer starts. If UTXIE1 is set, the UCA1TXIFG flag will not trigger a transfer.

A transfer is triggered when the hardware multiplier is ready for a new operand.
No transfer is triggered.

Devices with USCI_BO0 module: A transfer is triggered when USCI_BO receives new data.
UCBORXIFG is automatically reset when the transfer starts. If UCBORXIE is set, the
UCBORXIFG flag will not trigger a transfer.

No transfer is triggered.

Devices with USCI_BO0 module: A transfer is triggered when USCI_BO is ready to transmit
new data. UCBOTXIFG is automatically reset when the transfer starts. If UCBOTXIE is set, the
UCBOTXIFG flag will not trigger a transfer.

DMA Controller 6-13

DMA Operation

Table 6-2. DMA Trigger Operation (continued)

DMAXTSELx Operation

1110 A transfer is triggered when the DMAXIFG flag is set. DMAOIFG triggers channel 1, DMA1IFG
triggers channel 2, and DMA2IFG triggers channel 0. None of the DMAXIFG flags are
automatically reset when the transfer starts.

1111 A transfer is triggered by the external trigger DMAEOQ.

6.2.4 Stopping DMA Transfers
There are two ways to stop DMA transfers in progress:

[A single, block, or burst-block transfer may be stopped with an NMI
interrupt, if the ENNMI bit is set in register DMACTLA1.

(O A burst-block transfer may be stopped by clearing the DMAEN bit.

6.2.5 DMA Channel Priorities

The default DMA channel priorities are DMAO-DMA1-DMA2. If two or three
triggers happen simultaneously or are pending, the channel with the highest
priority completes its transfer (single, block or burst-block transfer) first, then
the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher
priority channel waits until the transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit.
When the ROUNDROBIN bit is set, the channel that completes a transfer
becomes the lowest priority. The order of the priority of the channels always
stays the same, DMAO-DMA1-DMAZ2, for example:

DMA Priority Transfer Occurs New DMA Priority
DMAO - DMA1 - DMA2 DMA1 DMA2 — DMAO - DMA1
DMA2 - DMAO - DMA1 DMA2 DMAO - DMA1 - DMA2
DMAO - DMA1 — DMA2 DMAO DMA1 - DMA2 - DMAO

When the ROUNDROBIN bit is cleared the channel priority returns to the
default priority.

6-14 DMA Controller

DMA Operation

6.2.6 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize
before each single transfer or complete block or burst-block transfer. Each
byte/word transfer requires two MCLK cycles after synchronization, and one
cycle of wait time after the transfer. Because the DMA controller uses MCLK,
the DMA cycle time is dependent on the MSP430 operating mode and clock
system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use the
MCLK source for each transfer, without re-enabling the CPU. If the MCLK
source is off, the DMA controller will temporarily restart MCLK, sourced with
DCOCLK, for the single transfer or complete block or burst-block transfer. The
CPU remains off, and after the transfer completes, MCLK is turned off. The
maximum DMA cycle time for all operating modes is shown in Table 6-3.

Table 6-3. Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time
Active mode MCLK=DCOCLK 4 MCLK cycles

Active mode MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 6 ust

Low-power mode LPM0/1 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM3 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM4 ~ MCLK=LFXT1CLK 5 MCLK cycles + 6 pst

T The additional 6 us are needed to start the DCOCLK. It is the tLPmx) Parameter in the data sheet.

DMA Controller 6-15

DMA Operation

6.2.7 Using DMA with System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts
remain pending until the completion of the transfer. NMI interrupts can
interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an
interrupt service routine or other routine must execute with no interruptions,
the DMA controller should be disabled prior to executing the routine.

6.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any
mode, when the corresponding DMAXSZ register counts to zero. If the
corresponding DMAIE and GIE bits are set, an interrupt request is generated.

All DMAIFG flags source only one DMA controller interrupt vector and, on
some devices, the interrupt vector may be shared with other modules. Please
refer to the device specific datasheet for further details. For these devices,
software must check the DMAIFG and respective module flags to determine
the source of the interrupt. The DMAIFG flags are not reset automatically and
must be reset by software.

Additionally, some devices utilize the DMAIV register. All DMAIFG flags are
prioritized, with DMAOIFG being the highest, and combined to source a single
interrupt vector. The highest priority enabled interrupt generates a number in
the DMAIV register. This number can be evaluated or added to the program
counter to automatically enter the appropriate software routine. Disabled DMA
interrupts do not affect the DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the high-
est pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, as-
sume that DMAO has the highest priority. If the DMAOIFG and DMA2IFG flags
are set when the interrupt service routine accesses the DMAIV register,
DMAOIFG is reset automatically. After the RETI instruction of the interrupt ser-
vice routine is executed, the DMA2IFG will generate another interrupt.

6-16 DMA Controller

DMA Operation

DMALIV Software Example

The following software example shows the recommended use of DMAIV and
the handling overhead. The DMAIV value is added to the PC to automatically
jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself.

;Interrupt handler for DMAOIFG, DMA1IFG, DMA2IFG Cycles
DMA_HND c ; Interrupt latency 6

ADD &DMAIV,PC ; Add offset to Jump table 3

RETI ; Vector O0: No interrupt 5

JMP DMAO_HND ; Vector 2: DMA channel 0 2

JMP DMAl1 HND ; Vector 4: DMA channel 1 2

JMP DMA2 HND ; Vector 6: DMA channel 2 2

8 5

0 5

5

5

RETI ; Vector : Reserved
RETI ; Vector 10: Reserved
RETI ; Vector 12: Reserved
RETI ; Vector 14: Reserved
DMA2 HND ; Vector 6: DMA channel 2
; Task starts here
RETI ; Back to main program 5
DMA1l HND ; Vector 4: DMA channel 1
; Task starts here
RETI ; Back to main program 5
DMAO_HND ; Vector 2: DMA channel 0

; Task starts here
RETI ; Back to main program 5

6.2.9 Using the USCI_B I2C Module with the DMA Controller

The USCI_B I2C module provides two trigger sources for the DMA controller.
The USCI_B I2C module can trigger a transfer when new 12C data is received
and when data is needed for transmit.

A transfer is triggered if UCBORXIFG is set. The UCBORXIFG is cleared
automatically when the DMA controller acknowledges the transfer. If
UCBORXIE is set, UCBORXIFG will not trigger a transfer.

A transfer is triggered if UCBOTXIFG is set. The UCBOTXIFG is cleared
automatically when the DMA controller acknowledges the transfer. If
UCBOTXIE is set, UCBOTXIFG will not trigger a transfer.

DMA Controller 6-17

DMA Operation

6.2.10 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data from any ADC12MEMX register to another location. DMA transfers are
done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput of the ADC12 module, and
enhances low-power applications allowing the CPU to remain off while data
transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx
= {0,2} the ADC12IFGx flag for the ADC12MEMx used for the conversion can
trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFGx flag for the
last ADC12MEMx in the sequence can trigger a DMA transfer. Any
ADC12IFGx flag is automatically cleared when the DMA controller accesses
the corresponding ADC12MEMXx.

6.2.11 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the DAC12_xDAT register. DMA transfers are done without CPU
intervention and independently of any low-power modes. The DMA controller
increases throughput to the DAC12 module, and enhances low-power
applications allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using
the DMA controller with the DAC12. For example, an application that produces
a sinusoidal waveform may store the sinusoid values in a table. The DMA
controller can continuously and automatically transfer the values to the DAC12
at specific intervals creating the sinusoid with zero CPU execution. The
DAC12_xCTL DAC12IFG flag is automatically cleared when the DMA
controller accesses the DAC12_xDAT register.

6.2.12 Writing to Flash With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the Flash memory. DMA transfers are done without CPU intervention
and independent of any low-power modes. The DMA controller performs the
move of the data word/byte to the Flash. The write timing control is done by
the Flash controller. Write transfers to the Flash memory succeed if the Flash
controller set-up is prior to the DMA transfer and if the Flash is not busy. To
set up the Flash controller for write accesses, see Chapter 7, Flash Memory
Controller.

6-18 DMA Controller

DMA Registers

6.3 DMA Registers

The DMA regqisters are listed in Table 6-4.

Table 6-4. DMA Registers

Register Short Form Register Type Address Initial State
DMA control 0 DMACTLO Read/write 0122h Reset with POR
DMA control 1 DMACTL1 Read/write 0124h Reset with POR
DMA interrupt vector DMAIV Read only 0126h Reset with POR
DMA channel 0 control DMAOCTL Read/write 01DOh Reset with POR
DMA channel 0 source address DMAOSA Read/write 01D2h Unchanged
DMA channel 0 destination address DMAODA Read/write 01D6h Unchanged
DMA channel 0 transfer size DMAO0SZ Read/write 01DAh Unchanged
DMA channel 1 control DMA1CTL Read/write 01DCh Reset with POR
DMA channel 1 source address DMA1SA Read/write 01DEh Unchanged
DMA channel 1 destination address DMA1DA Read/write 01E2h Unchanged
DMA channel 1 transfer size DMA1SZ Read/write 01E6h Unchanged
DMA channel 2 control DMA2CTL Read/write 01E8h Reset with POR
DMA channel 2 source address DMA2SA Read/write 01EAh Unchanged
DMA channel 2 destination address DMA2DA Read/write 01EEh Unchanged
DMA-channel 2 transfer size DMA2SZ Read/write 01F2h Unchanged

DMA Controller 6-19

DMA Registers

DMACTLO, DMA Control Register 0

15

14 13 12

10 9

Reserved

DMA2TSELXx

rw—(0)

rw—(0) rw—(0) rw—(0)

rw—(0)

rw—(0) rw—(0)

rw—(0)

DMA1TSELx

DMAOTSELXx

rw—(0)

Reserved

DMA2
TSELX

DMA1
TSELX

DMAO
TSELx

6-20

rw—(0) rw—(0) rw—(0)

rw—(0)

rw—(0) rw—(0)

Bits
15-12
Bits
11-8

Bits
7-4
Bits
3-0

Reserved

DMA trigger select. These bits select the DMA transfer trigger.

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001
1010
1011

1100
1101

1110

111

DMAREQ bit (software trigger)
TACCR2 CCIFG bit

TBCCR2 CCIFG bit

Serial data received UCAORXIFG
Serial data transmit ready UCAOTXIFG
DAC12_0CTL DAC12IFG bit

ADC12 ADC12IFGx bit

TACCRO CCIFG bit

TBCCRO CCIFG bit

Serial data received UCA1RXIFG
Serial data transmit ready UCA1TXIFG
Multiplier ready

Serial data received UCBORXIFG
Serial data transmit ready UCBOTXIFG
DMAOIFG bit triggers DMA channel 1
DMA1IFG bit triggers DMA channel 2
DMAZ2IFG bit triggers DMA channel 0
External trigger DMAEO

Same as DMA2TSELXx

Same as DMA2TSELXx

DMA Controller

rw—(0)

DMA Registers

DMACTL1, DMA Control Register 1

15 14 13 12 11 10 9 8
] 0 0] 0 0 0 0
ro r0 r0 ro ro r0 r0 ro
7 6 5 4 3 2 1 0
DMA ROUND
0 0 0 0 0 ONFETCH | ROBIN ENNMI
r0 r0 r0 r0 r0 rw—(0) rw—(0) rw—(0)
Reserved Bits Reserved. Read only. Always read as 0.
15-3
DMA Bit 2 DMA on fetch
ONFETCH 0 The DMA transfer occurs immediately
1 The DMA transfer occurs on next instruction fetch after the trigger
ROUND Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
ROBIN 0 DMA channel priority is DMAO — DMA1 — DMA2
1 DMA channel priority changes with each transfer
ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI

interrupt. When an NMI interrupts a DMA transfer, the current transfer is
completed normally, further transfers are stopped, and DMAABORT is set.
0 NMI interrupt does not interrupt DMA transfer

1 NMI interrupt interrupts a DMA transfer

DMA Controller 6-21

DMA Registers

DMAXCTL, DMA Channel x Control Register

15 14 13 12 11 10 9 8
Reserved DMADTXx DMADSTINCRx DMASRCINCRXx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
DSTIVTE | SRoBWTE | DMALEVEL | DMAEN DMAIFG DMAIE ABORT | omarea
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

Reserved Bit 15 Reserved

DMADTX Bits DMA Transfer mode.
14-12 000 Single transfer
001 Block transfer
010 Burst-block transfer
011 Burst-block transfer
100 Repeated single transfer
101 Repeated block transfer
110 Repeated burst-block transfer
111 Repeated burst-block transfer

DMA Bits DMA destination increment. This bit selects automatic incrementing or
DSTINCRx 11-10 decrementing of the destination address after each byte or word transfer.
When DMADSTBYTE=1, the destination address increments/decrements by
one. When DMADSTBYTE=0, the destination address
increments/decrements by two. The DMAXDA is copied into a temporary
register and the temporary register is incremented or decremented. DMAxDA
is not incremented or decremented.
00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented

DMA Bits DMA source increment. This bit selects automatic incrementing or
SRCINCRx 9-8 decrementing of the source address for each byte or word transfer. When
DMASRCBYTE=1, the source address increments/decrements by one.
When DMASRCBYTE=0, the source address increments/decrements by
two. The DMAXSA is copied into a temporary register and the temporary
register is incremented or decremented. DMAXSA is not incremented or
decremented.
00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented

DMA Bit 7 DMA destination byte. This bit selects the destination as a byte or word.
DSTBYTE 0 Word
1 Byte

6-22 DMA Controller

DMA
SRCBYTE

DMA

LEVEL

DMAEN

DMAIFG

DMAIE

DMA

ABORT

DMAREQ

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

DMA Registers

DMA source byte. This bit selects the source as a byte or word.
0 Word
1 Byte

DMA level. This bit selects between edge-sensitive and level-sensitive
triggers.

0 Edge sensitive (rising edge)

1 Level sensitive (high level)

DMA enable
0 Disabled
1 Enabled

DMA interrupt flag
0 No interrupt pending
1 Interrupt pending

DMA interrupt enable
0 Disabled
1 Enabled

DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI

DMA request. Software-controlled DMA start. DMAREQ is reset
automatically.

0 No DMA start

1 Start DMA

DMA Controller 6-23

DMA Registers

DMAXSA, DMA Source Address Register

15 14 13 12 11 10 9 8
Reserved
r0 r0 r0 r0 r0 ro r0 r0
7 6 5 4 3 2 1 0
Reserved DMAXSAXx
r0 r0 ro r0 rw rw rw rw
15 14 13 12 1 10 9 8
DMAXSAXx
rw rw rw rw rw rw rw rw
7 6 5 4 3 2 1 0
DMAXSAX
rw rw rw rw rw rw rw rw
DMAxSA Bits DMA source address The source address register points to the DMA source
15-0 address for single transfers or the first source address for block transfers. The

6-24

source address register remains unchanged during block and burst-block
transfers.

Devices that have addressable memory range 64 KB or below contain a single
word for the DMAXSA. The upper word is automatically cleared when writing
using word operations. Reads from this location are always read as zero.

Devices that have addressable memory range beyond 64 KB contain an
additional word for the source address. Bits 15-4 of this additional word are
reserved and always read as zero. When writing to DMAxSA with word
formats, this additional word is automatically cleared. Reads of this additional
word using word formats, are always read as zero.

DMA Controller

DMA Registers

DMAXxDA, DMA Destination Address Register

15 14 13 12 1 10 9 8
Reserved
ro r0 r0 ro ro r0 r0 ro
7 6 5 4 3 2 1 0
Reserved DMAXxDAX
ro ro r0 ro rw rw rw rw
15 14 13 12 1 10 9 8
DMAXxDAX
rw rw rw rw rw rw rw rw
7 6 5 4 3 2 1 0
DMAXxDAX
rw rw rw rw rw rw rw rw
DMAxDA Bits DMA destination address The destination address register points to the
15-0 DMA destination address for single transfers or the first destination address

for block transfers. The destination address register remains unchanged
during block and burst-block transfers.

Devices that have addressable memory range 64 KB or below contain a single
word for the DMAxDA.

Devices that have addressable memory range beyond 64 KB contain an
additional word for the destination address. Bits 15-4 of this additional word
are reserved and always read as zero. When writing to DMAxDA with word
formats, this additional word is automatically cleared. Reads of this additional
word using word formats, are always read as zero.

DMA Controller 6-25

DMA Registers

DMAXSZ, DMA Size Address Register

15 14 13 12 11 10 9 8
DMAXSZx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0
DMAXSZx

rw rw rw rw rw rw rw rw

DMAXxSZx Bits
15-0

DMA size. The DMA size register defines the number of byte/word data per
block transfer. DMAXSZ register decrements with each word or byte transfer.
When DMAXSZ decrements to 0, it is immediately and automatically reloaded
with its previously initialized value.

00000h Transfer is disabled

00001h One byte or word to be transferred

00002h Two bytes or words have to be transferred

OFFFFh 65535 bytes or words have to be transferred

6-26 DMA Controller

DMAIV, DMA Interrupt Vector Register

DMA Registers

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
ro r0 r0 ro ro r0 r0 ro
7 6 5 4 3 2 1 0
0 0 0 0 DMAIVx 0
r0 r0 r0 r0 r—(0) r—(0) r—(0) r0
DMAIVx Bits DMA interrupt vector value
15-0
Interrupt
DMAIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h DMA channel 0 DMAOIFG Highest
04h DMA channel 1 DMA1IFG
06h DMA channel 2 DMA2IFG
08h Reserved -
0OAh Reserved -
0Ch Reserved -
OEh Reserved - Lowest

DMA Controller

6-27

Chapter 7

Flash Memory Controller

This chapter describes the operation of the MSP430x2xx flash memory
controller.

Topic Page
7.1 Flash Memory Introductionccoiiiiiiiiiiiiinnnnnn. 7-2
7.2 Flash Memory Segmentationccoiiiiiiiiiinnnnn.. 7-3
7.3 Flash Memory Operationcviiiiiiirnnnnrnnnnnnnnns 7-5
7.4 Flash Memory Registerscccoiiiiiiiiiiiiinrinnnnnens 7-20

7-1

Flash Memory Introduction

7.1

Flash Memory Introduction

The MSP430 flash memory is bit—, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has four registers,
a timing generator, and a voltage generator to supply program and erase
voltages.

MSP430 flash memory features include:

a

4
4
J
4

Internal programming voltage generation
Bit, byte or word programmable
Ultralow-power operation

Segment erase and mass erase

Marginal 0 and marginal 1 read mode (optional, please refer to device
specific data sheet)

The block diagram of the flash memory and controller is shown in Figure 7-1.

Note: Minimum V¢ During Flash Write or Erase

The minimum V¢ voltage during a flash write or erase operation is 2.2 V.
If Vg falls below 2.2 V during a write or erase, the result of the write or erase
will be unpredictable.

Figure 7-1. Flash Memory Module Block Diagram

7-2

1T

i MAB 5
\} =~ > =

FCTL1 Address Latch —» Data Latch

AL-iE 1 1T

FeTL2 Enable

gh 1; airens

FCTL3 [| ket

11 if N emon

FCTL4 /] Array

Timing
Generator Enable

Data Latch

Programming
Voltage
Generator

Flash Memory Controller

Flash Memory Segmentation

7.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or
words can be written to flash memory, but the segment is the smallest size of
flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments. The main memory has
two or more 512-byte segments. See the device-specific data sheet for the
complete memory map of a device.

The segments are further divided into blocks.

Figure 7-2 shows the flash segmentation using an example of 32-KB flash
that has eight main segments and four information segments.

Figure 7-2. Flash Memory Segments, 32-KB Example

Ox0F FFF

O
O10FF

001000

OFFFF OxOFFFF
kb mxoFEm | Seamertl morrco| PR
Frh OFDFF Seqmar OFFAF Ainck
Maly Mem oy OFCO g O:dFFE0
OFFTF
Segment2 S B ok
S124vE [kcOF F3F
B ok
Flash OO FFO
Inommation Memo iy OxOFFFF
B ok
OxOF ECO
OxOFEBF
Segm e te1 S ——— B ok
OxOFETF
Segm e tE2 OF EdO B ok
OxOF E3F
0=0m gn e ted OF 510 Block
L
O10FF
Segments,
Segmenth
e gme itc
010m SegmetD

Flash Memory Controller

7-3

Flash Memory Segmentation

7.2.1 SegmentA

SegmentA of the information memory is locked separately from all other
segments with the LOCKA bit. When LOCKA = 1, SegmentA cannot be written
or erased and all information memory is protected from erasure during a mass
erase or production programming. When LOCKA = 0, SegmentA can be
erased and written as any other flash memory segment, and all information

memory is erased during a mass erase or production programming.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to
LOCKA has no effect. This allows existing flash programming routines to be

used unchanged.

; Unlock SegmentA

BIT
JZ
MOV

#LOCKA, &FCTL3
SEGA_ UNLOCKED
#FWKEY+LOCKA, &FCTL3

SEGA_UNLOCKED

; SegmentA is unlocked

; Lock SegmentA

BIT
JNZ
MOV

#LOCKA, &FCTL3
SEGALOCKED
#FWKEY+LOCKA, &FCTL3

SEGA_LOCKED
; SegmentA is locked

7-4 Flash Memory Controller

Test LOCKA

; Already unlocked?
; No, unlock SegmentA
; Yes, continue

Test LOCKA

; Already locked?
; No, lock SegmentA

; Yes, continue

Flash Memory Operation

7.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
MERAS, and ERASE bits and are:

(1 Byte/word write
Block write
Segment Erase

Mass Erase (all main memory segments)

(I I A I

All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

7.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 7-3. The flash timing generator operating frequency, frrg, must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific data sheet).

Figure 7-3. Flash Memory Timing Generator Block Diagram

ACLK
MCLK
SMCLK
SMCLK

FSSELx
FN5 weeeeeee FNO PUC EMEX
00 T T T T
01 fF1e Reset
10 Divider, 1-64
Flash Timing Generator
1

.

BUSY WAIT

Flash Memory Controller 7-5

Flash Memory Operation

Flash Timing Generator Clock Selection

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for frrg. If the fprg frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

If a clock failure is detected during a write or erase operation, the operation is
aborted, the FAIL flag is set, and the result of the operation is unpredictable.

While a write or erase operation is active the selected clock source can not be
disabled by putting the MSP430 into a low-power mode. The selected clock
source will remain active until the operation is completed before being
disabled.

7-6 Flash Memory Controller

Flash Memory Operation

7.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to O individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. There are three
erase modes selected with the ERASE and MERAS bits listed in Table 7-1.

Table 7-1. Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 LOCKA = 0: Erase main and information flash memory.

LOCKA = 1: Erase only main flash memory.

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 7-4 shows the erase cycle timing. The BUSY bit is set immediately after
the dummy write and remains set throughout the erase cycle. BUSY, MERAS,
and ERASE are automatically cleared when the cycle completes. The erase
cycle timing is not dependent on the amount of flash memory present on a
device. Erase cycle times are equivalent for all MSP430F2xx devices.

Figure 7-4. Erase Cycle Timing

I [I |
| Erase Operation Active

|
Generate Remove
Programming Voltage Programming \I/Oltage
[

| Erase Time, Vg Current Consumption is Increased

I
»
»
I
I |
BUSY
—I tmass erase = 10593/fF1G, tsegment erase = 4819/fr1g I—

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

Flash Memory Controller 7-7

Flash Memory Operation

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
a flash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution

with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution

will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 7-5.

Figure 7-5. Erase Cycle from Within Flash Memory

7-8

Disable watchdog

v

Setup flash controller and erase
mode

v

Dummy write

v

Set LOCK=1, re-enable watchdog

; Segment Erase from flash. 514 kHz

; Assumes ACCVIE = NMIIE = OFIE =
MOV #WDTPW+WDTHOLD, &WNDTCTL
MOV #FWKEY+FSSEL1+FNO, & FCTL2
MOV #FWKEY, &FCTL3
MOV #FWKEY+ERASE, &FCTL1
CLR &0FC10h
MOV #FWKEY+LOCK, &FCTL3

Flash Memory Controller

0.

I

I

< SMCLK < 952 kHz

Disable WDT

SMCLK/2

Clear LOCK

Enable segment erase
Dummy write, erase S1
Done, set LOCK
Re-enable WDT?

Flash Memory Operation

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If a flash access occurs while BUSY=1, it is an access violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 7-6.

Figure 7-6. Erase Cycle from Within RAM

Disable watchdog

Setup flash controller and
erase mode

Dummy write

e

Set LOCK =1, re-enable
watchdog

; Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ Ll ; Loop while busy

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2

MOV #FWKEY, &FCTL3 ; Clear LOCK

MOV #FWKEY+ERASE, &FCTL1 ; Enable erase

CLR &0FC10h ; Dummy write, erase S1
L2 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK

; Re-enable WDT?

Flash Memory Controller 7-9

Flash Memory Operation

7.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 7-1.

Table 7-2. Write Modes

BLKWRT WRT Write Mode
0 1 Byte/word write
1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word mode or block write mode. A flash word (low + high byte) must not
be written more than twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY=1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 7-7.

Figure 7-7. Byte/Word Write Timing

N

Y

Y
< e \
\ Programming Operation Active !

Generate Remove

Programming Voltage Programming Yoltage
\

Programming Time, V¢ Current Consumption is Increased

\ \
|)
|~ 7]
| \
BUSY
_ tword write = 30/fFTg L

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

7-10 Flash Memory Controller

Flash Memory Operation

In byte/word mode, the internally-generated programming voltage is applied
to the complete 64-byte block, each time a byte or word is written, for 27 of the
30 frrg cycles. With each byte or word write, the amount of time the block is
subjected to the programming voltage accumulates. The cumulative
programming time, tcpt must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific data
sheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 7-8.

Figure 7-8. Initiating a Byte/Word Write from Flash

Disable watchdog

v

Setup flash controller
and set WRT=1

v

Write byte or word

v

Set WRT=0, LOCK=1,
re-enable watchdog

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes OFF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2

MOV #FWKEY, &FCTL3 ; Clear LOCK

MOV #FWKEY+WRT, &FCTL1 ; Enable write

MOV #0123h, &0FF1Eh ; 0123h -> OFFlEh
MOV #FWKEY, &FCTL1 ; Done. Clear WRT
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

; Re-enable WDT?

Flash Memory Controller 7-11

Flash Memory Operation

Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 7-9.

Figure 7-9. Initiating a Byte/Word Write from RAM

Disable watchdog

Setup flash controller
and set WRT=1

N

Write byte or word

R

Set WRT=0, LOCK =1
re-enable watchdog

; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes OFF1lEh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV H#WDTPW+WDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ Ll ; Loop while busy
MOV #FWKEY+FSSEL1+FNO, & FCTL2 ; SMCLK/2
MOV #FWKEY, &FCTL3 ; Clear LOCK
MOV #FWKEY+WRT, &FCTL1 ; Enable write
MOV #0123h, &0FF1Eh ; 0123h -> OFF1lEh
L2 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY, &FCTL1 ; Clear WRT
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

; Re-enable WDT?

7-12 Flash Memory Controller

Flash Memory Operation

Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tcpt must not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tgng. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 7-10 shows the block write timing.

Figure 7-10. Block-Write Cycle Timing

BLKWRT bit

_

¢ v

Write to flash e.g., MOV #123h, &Flash

!) /L 11-
7 A ~ - |

Proqramming Voltage

WAIT

|A 1

gl -l
l L] T T

- Y
A

Generate Pr?gramming Operation Acti\I/e

[[

! ! Programming Voltage

I I Il

I I |1
I

I
Cumulative Programming Time tcpt ~=< 4ms, Vg Current Consumption is Increased

L] 1. |
1 7 /f

-

!
| Al
T T T T

tBlock, 0 = 25/fFTG .| 1Block, 1-63 = 18/frrg .| tBlock, 1-63 = 18/fr1G o] tend= 6/fFra

> >
)l » < l 4_”

Flash Memory Controller 7-13

Flash Memory Operation

Block Write Flow and Example

A block write flow is shown in Figure 7-8 and the following example.

Figure 7-11. Block Write Flow

Disable watchdog

Setup flash controller

>
A

y

Set BLKWRT=WRT=1

>

A

Write byte or word

Block Border?

Set BLKWRT=0

Set WRT=0, LOCK=1
re-enable WDT

7-14 Flash Memory Controller

L1

L2
L3

L4

Flash Memory Operation

Write one block starting at OF000h.
Must be executed from RAM, Assumes Flash is already erased.
514 kHz < SMCLK < 952 kHz

Assumes ACCVIE = NMIIE = OFIE =
MOV #32,R5 Use as write counter
MOV #0F000h,R6 Write pointer
MOV #WDTPW+WDTHOLD, &WDTCTL Disable WDT
BIT #BUSY, &FCTL3 Test BUSY
JNZ Ll Loop while busy
MOV #FWKEY+FSSEL1+FNO, &FCTL2 SMCLK/ 2
MOV #FWKEY, & FCTL3 Clear LOCK
MOV #FWKEY+BLKWRT+WRT, & FCTL1 Enable block write
MOV Write Value, 0 (R6) Write location
BIT H#WAIT, &FCTL3 Test WAIT
JZ L3 Loop while WAIT=0
INCD R6 Point to next word
DEC R5 Decrement write counter
JINZ L2 End of block?
MOV #FWKEY, &FCTL1 Clear WRT,BLKWRT
BIT #BUSY, &FCTL3 Test BUSY
JNZ L4 Loop while busy
MOV #FWKEY+LOCK, &FCTL3 Set LOCK

Flash Memory Controller

Re-enable WDT if needed

7-15

Flash Memory Operation

7.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY=1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT=0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PC instruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY=0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 7-3.

Table 7-3. Flash Access While BUSY = 1

Flash Flash WAIT Result
Operation Access
Read 0 ACCVIFG = 0. 03FFFh is the value read
Any erase, or Write 0 ACCVIFG = 1. Write is ignored
Byte/word write |\ iruction 0 ACCVIFG = 0. CPU fetches 03FFFh. This
fetch is the gMP PC instruction.
Any 0 ACCVIFG =1, LOCK =1
Read 1 ACCVIFG = 0, 03FFFh is the value read
Block write Write 1 ACCVIFG = 0, Write is written
Instruction 1 ACCVIFG =1, LOCK =1
fetch

Interrupts are automatically disabled during any flash operation when EEI =
0 and EEIEX = 0 and on MSP430x20xx devices where EEI and EEIEX are not
present. After the flash operation has completed, interrupts are automatically
re-enabled. Any interrupt that occurred during the operation will have its
associated flag set, and will generate an interrupt request when re-enabled.

When EEIEX = 1 and GIE = 1, an interrupt will immediately abort any flash
operation and the FAIL flag will be set. When EEl = 1, GIE = 1, and EEIEX =
0, a segment erase will be interrupted by a pending interrupt every 32 frrg
cycles. After servicing the interrupt, the segment erase is continued for at least
32 ferg cycles or until it is complete. During the servicing of the interrupt, the
BUSY bit remains set but the flash memory can be accessed by the CPU
without causing an access violation occurs. Nested interrupts and using the
RET]I instruction inside interrupt service routines are not supported.

The watchdog timer (in watchdog mode) should be disabled before a flash
erase cycle. A reset will abort the erase and the result will be unpredictable.
After the erase cycle has completed, the watchdog may be re-enabled.

7-16 Flash Memory Controller

Flash Memory Operation

7.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

7.3.6 Marginal Read Mode

The marginal read mode can be used to verify the integrity of the flash memory
contents. This feature is implemented in selected 2xx devices; see the
device-specific data sheet for availability. During marginal read mode
marginally programmed flash memory bit locations can be detected. Events
that could produce this situation include improper ferg settings, or violation of
minimum V¢ during erase/program operations. One method for identifying
such memory locations would be to periodically perform a checksum
calculation over a section of flash memory (for example, a flash segment) and
repeating this procedure with the marginal read mode enabled. If they do not
match, it could indicate an insufficiently programmed flash memory location.
It is possible to refresh the affected Flash memory segment by disabling
marginal read mode, copying to RAM, erasing the flash segment, and writing
back to it from RAM.

The program checking the flash memory contents must be executed from
RAM. Executing code from flash will automatically disable the marginal read
mode. The marginal read modes are controlled by the MRG0 and MRG1
register bits. Setting MRG1 is used to detect insufficiently programmed flash
cells containing a “1” (erased bits). Setting MRGO is used to detect
insufficiently programmed flash cells containing a “0” (programmed bits). Only
one of these bits should be set at a time. Therefore, a full marginal read check
will require two passes of checking the flash memory content’s integrity. During
marginal read mode, the flash access speed (MCLK) must be limited to 1 MHz
(see the device-specific data sheet).

7.3.7 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit, password-protected, read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLx
register with any value other than OA5h in the upper byte is a security key
violation, sets the KEYV flag and triggers a PUC system reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT=1, but writing to FCTL1 in block write mode when WAIT =0 is an
access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY = 1 is an access violation.

Any FCTLx register may be read when BUSY = 1. A read will not cause an
access violation.

Flash Memory Controller 7-17

Flash Memory Operation

7.3.8 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag will generate an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated
immediately resetting the device.

7.3.9 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options
support in-system programming:

(1 Program via JTAG
(1 Program via the Bootstrap Loader

[0 Program via a custom solution

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals (5 signals on 20- and 28-pin devices), ground and
optionally Vo and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the Application report Programming a
Flash-Based MSP430 Using the JTAG Interface at www.msp430.com.

Programming Flash Memory via the Bootstrap loader (BSL)

Most MSP430 flash devices contain a bootstrap loader. Refer to the device
specific data sheet for implementation details. The BSL enables users to read
or program the flash memory or RAM using a UART serial interface. Access
to the MSP430 flash memory via the BSL is protected by a 256-bit,
user-defined password. For more details see the Application report Features
of the MSP430 Bootstrap Loader at www.ti.com/msp430.

7-18 Flash Memory Controller

Flash Memory Operation

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 7-12. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Since this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 7-12. User-Developed Programming Solution

Flash Memory
Commands, data, etc.
UART,
———Pp L1 Px.x, —Pp] CPU executes |—p»
Host 4 MSP430 €| SPI, |€4— usersoftware |€—
etc.

Read/write flash memory

Flash Memory Controller 7-19

Flash Memory Registers

7.4 Flash Memory Registers

The flash memory registers are listed in Table 7-4.

Table 7-4. Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTLA Read/write 0x0128 0x9600 with PUC
Flash memory control register 2 FCTL2 Read/write 0x012A 0x9642 with PUC
Flash memory control register 3 FCTL3 Read/write 0x012C 0x9658 with PUCT
Flash memory control register 4+ FCTL4 Read/write 0x01BE 0x0000 with PUC
Interrupt Enable 1 IE1 Read/write 0x0000 Reset with PUC
Interrupt Flag 1 IFG1 Read/write 0x0002

T KEYV is reset with POR
¥ Not present in all MSP430x2xx devices. See device specific data sheet.

7-20 Flash Memory Controller

Flash Memory Registers

FCTL1, Flash Memory Control Register

15 14 13 12 1 10 9 8
FRKEY, Read as 096h
FWKEY, Must be written as 0A5h
7 6 5 4 3 2 1 0
BLKWRT WRT Reserved EEIEXt EEIt MERAS ERASE Reserved
rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 r0

T Not present on MSP430x20xx Devices

FRKEY/
FWKEY

BLKWRT

WRT

Reserved

EEIEX

EEI

MERAS
ERASE

Reserved

Bits
15-8

Bit 7

Bit 6

Bit 5
Bit 4

Bits 3

Bit 2

Bit 1

Bit 0

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.

0 Block-write mode is off

1 Block-write mode is on

Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.

0 Write mode is off

1 Write mode is on

Reserved. Always read as 0.

Enable Emergency Interrupt Exit. Setting this bit enables an interrupt to cause
an emergency exit from a flash operation when GIE = 1. EEIEX is
automatically reset when EMEX is set.

0 Exit interrupt disabled.

1 Exit on interrupt enabled.

Enable Erase Interrupts. Setting this bit allows a segment erase to be
interrupted by an interrupt request. After the interrupt is serviced the erase
cycle is resumed.

0 Interrupts during segment erase disabled.

1 Interrupts during segment erase enabled.

Mass erase and erase. These bits are used together to select the erase mode.
MERAS and ERASE are automatically reset when EMEX is set.

MERAS ERASE Erase Cycle
0 0 No erase
0 1 Erase individual segment only
1 0 Erase all main memory segments
1 1 LOCKA = 0: Erase main and information flash memory.

LOCKA = 1: Erase only main flash memory.

Reserved. Always read as 0.

Flash Memory Controller 7-21

Flash Memory Registers

FCTL2, Flash Memory Control Register

15 14 13 12 11 10

FWKEYX, Read as 096h
Must be written as 0A5h

FSSELx FNx

rw—0 rw—1 rw-0 rw-0 rw-0 rw-0

FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC

15-8 will be generated.

FSSELx Bits Flash controller clock source select
7-6 00 ACLK
01 MCLK
10 SMCLK
11 SMCLK
FNx Bits Flash controller clock divider. These six bits select the divider for the flash
5-0 controller clock. The divisor value is FNx + 1. For example, when FNx = 00h,

the divisor is 1. When FNx = 03Fh, the divisor is 64.

7-22 Flash Memory Controller

Flash Memory Registers

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 1 10 9 8
FWKEYX, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
FAIL LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY
r(w)-0 r(w)-1 rw-0 rw-1 r-1 rw-0 rw-(0) r(w)-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.

FAIL Bit 7 Operation failure. This bit is set if the fprg clock source fails, or a flash
operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset
with software.

0 No failure
1 Failure

LOCKA Bit 6 SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has
no effect.

0 Segment A unlocked and all information memory is erased during a
mass erase.

1 Segment A locked and all information memory is protected from erasure
during a mass erase.

EMEX Bit 5 Emergency exit
0 No emergency exit
1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation will complete normally. In the block write mode if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset and the mode
ends normally.

0 Unlocked
1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.

0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write
ACCVIFG Bit 2 Access violation interrupt flag

0 No interrupt pending
1 Interrupt pending

Flash Memory Controller 7-23

Flash Memory Registers

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.

0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not Busy
1 Busy

7-24 Flash Memory Controller

Flash Memory Registers

FCTLA4, Flash Memory Control Register FCTL4 (optional, refer to device-specific

data sheet)

15 14 13 12 11 10 9 8
FWKEYx, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
MRG1 MRGO
r-0 r-0 rw-0 rw-0 r-0 r-0 r-0 r-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.
Reserved Bits Reserved. Always read as 0.
7-6
MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The
marginal read 1 bit is cleared if the CPU starts execution from the flash
memory. If both MRG1 and MRGO are set MRG1 is active and MRGO is
ignored.
0 Marginal 1 read mode is disabled.
1 Marginal 1 read mode is enabled.
MRGO Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The
marginal mode 0 is cleared if the CPU starts execution from the flash memory.
If both MRG1 and MRGO are set MRG1 is active and MRGO is ignored.
0 Marginal 0 read mode is disabled.
1 Marginal 0 read mode is enabled.
Reserved Bits Reserved. Always read as 0.
3-0

Flash Memory Controller 7-25

Flash Memory Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
ACCVIE
rw-0
Bits These bits may be used by other modules. See the device-specific data sheet.
0
ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the

ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions,
rather than MOV . B or CLR . B instructions.

0 Interrupt not enabled

1 Interrupt enabled

7-26 Flash Memory Controller

Chapter 8

Digital /0

This chapter describes the operation of the digital 1/0O ports.

Topic Page
8.1 Digital /O Introductionc.cciiiiiiiiiiii 8-2
8.2 Digital /O Operationcciiiiiiiiiirrinnnnrennnnnnnns 8-3
8.3 Digital /ORegisterscoiiiiiiiiiiiiiiiiiiiiiiiaaas 8-7

8-1

Digital I/O Introduction

8.1

8-2

Digital 1/0 Introduction

Digital I/O

MSP430 devices have up to eight digital I/O ports implemented, P1 to P7.
Each port has eight I/O pins. Every 1/O pin is individually configurable for input
or output direction, and each 1/O line can be individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 I/O lines source a single
interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/0 features include:

(1 Independently programmable individual 1/Os
[J Any combination of input or output

(1 Individually configurable P1 and P2 interrupts
(1 Independent input and output data registers
a

Individually configurable pullup or pulldown resistors

Digital I/O Operation

8.2 Digital I/0 Operation

The digital I/O is configured with user software. The setup and operation of the
digital I/O is discussed in the following sections.

8.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding 1/O pin when the pin is configured as 1/O function.

Bit = 0: The input is low
Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

8.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/0 pin when the pin is configured as I/O function, output direction, and the
pull-up/down resistor is disabled.

Bit = 0: The output is low
Bit = 1: The output is high

If the pin’s pull-up/down resistor is enabled, the corresponding bit in the
PxOUT register selects pull-up or pull-down.

Bit = 0: The pin is pulled down
Bit = 1: The pin is pulled up

8.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding 1/0
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other functions must be set as required by the other function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown
resistor of the corresponding I/O pin. The corresponding bit in the PxOUT
register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/pulldown resistor disabled

Bit = 1: Pullup/pulldown resistor enabled

Digital /O 8-3

Digital I/O Operation

8.2.5 Function Select Registers PxSEL and PxSEL2

8-4

Digital I/O

Port pins are often multiplexed with other peripheral module functions. See the
device-specific data sheet to determine pin functions. Each PxSEL and
PxSEL2 bit is used to select the pin function — I/O port or peripheral module
function.

PxSEL2 PxSEL Pin Function
0 0 I/0 function is selected.
0 1 Primary peripheral module function is selected.
1 0 Reserved. See device-specific data sheet.
1 1 Secondary peripheral module function is selected.

Setting PxSELx = 1 does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRx bits to be configured
according to the direction needed for the module function. See the pin
schematics in the device-specific data sheet.

Note: Setting PXREN =1 When PxSEL =1

On some 1/O ports on the MSP430F261x and MSP430F2416/7/8/9, enabling
the pullup/pulldown resistor (PXREN = 1) while the module function is
selected (PxSEL = 1) does not disable the logic output driver. This
combination is not recommended and may result in unwanted current flow
through the internal resistor. See the device-specific data sheet pin
schematics for more information.

;Output ACLK on P2.0 on MSP430F21x1
BIS.B #01h,&P2SEL ; Select ACLK function for pin
BIS.B #01lh,&P2DIR ; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PxSEL =1

When any P1SELx or P2SELXx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins will not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PxSELx = 1, the internal input signal follows the signal at the pin. However, if
the PxSELx = 0, the input to the peripheral maintains the value of the input
signal at the device pin before the PxSELXx bit was reset.

Digital I/O Operation

8.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending
Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine, or is set after the RETT instruction of

a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P20UT, or P2DIR can result in setting the
corresponding P11FG or P2IFG flags.

Digital /O 8-5

Digital I/O Operation

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
Bit = 0: The PxIFGx flag is set with a low-to-high transition
Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx
Writing to P1IES, or P2IES can result in setting the corresponding interrupt

flags.

PxIESx PxINXx PxIFGx
01 0 May be set
0—>1 1 Unchanged
1-0 0 Unchanged
150 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.
Bit = 0: The interrupt is disabled.

Bit = 1: The interrupt is enabled.

8.2.7 Configuring Unused Port Pins

Unused I/O pins should be configured as 1/0 function, output direction, and left
unconnected on the PC board, to prevent a floating input and reduce power
consumption. The value of the PxOUT bit is irrelevant, since the pin is
unconnected. Alternatively, the integrated pullup/pulldown resistor can be
enabled by setting the PxREN bit of the unused pin to prevent the floating
input. See chapter System Resets, Interrupts, and Operating Modes for
termination of unused pins.

8-6 Digital I/O

8.3 Digital I/O Registers

Table 8-1. Digital I/O Registers

The digital I/O registers are listed in Table 8-1.

Digital I/O Registers

Port Register Short Form Address Register Type Initial State

P1 Input P1IN 020h Read only -
Output P1OUT 021h Read/write Unchanged
Direction P1DIR 022h Read/write Reset with PUC
Interrupt Flag P1IFG 023h Read/write Reset with PUC
Interrupt Edge Select P1IES 024h Read/write Unchanged
Interrupt Enable P1IE 025h Read/write Reset with PUC
Port Select P1SEL 026h Read/write Reset with PUC
Port Select 2 P1SEL2 041h Read/write Reset with PUC
Resistor Enable P1REN 027h Read/write Reset with PUC

P2 Input P2IN 028h Read only -
Output P20OUT 029h Read/write Unchanged
Direction P2DIR 02Ah Read/write Reset with PUC
Interrupt Flag P2IFG 02Bh Read/write Reset with PUC
Interrupt Edge Select P2IES 02Ch Read/write Unchanged
Interrupt Enable P2IE 02Dh Read/write Reset with PUC
Port Select P2SEL 02Eh Read/write 0COh with PUC
Port Select 2 P2SEL2 042h Read/write Reset with PUC
Resistor Enable P2REN 02Fh Read/write Reset with PUC

P3 Input P3IN 018h Read only -
Output P30OUT 019h Read/write Unchanged
Direction P3DIR 01Ah Read/write Reset with PUC
Port Select P3SEL 01Bh Read/write Reset with PUC
Port Select 2 P3SEL2 043h Read/write Reset with PUC
Resistor Enable P3REN 010h Read/write Reset with PUC

P4 Input P4IN 01Ch Read only -
Output P40OUT 01Dh Read/write Unchanged
Direction P4DIR 01Eh Read/write Reset with PUC
Port Select P4SEL 01Fh Read/write Reset with PUC
Port Select 2 P4SEL2 044h Read/write Reset with PUC
Resistor Enable P4REN 011h Read/write Reset with PUC

P5 Input P5IN 030h Read only -
Output P50UT 031h Read/write Unchanged
Direction P5DIR 032h Read/write Reset with PUC
Port Select P5SEL 033h Read/write Reset with PUC
Port Select 2 P5SEL2 045h Read/write Reset with PUC
Resistor Enable P5REN 012h Read/write Reset with PUC

Digital /O

8-7

Digital I/O Registers

P6 Input P6IN 034h Read only -
Output P6OUT 035h Read/write Unchanged
Direction P6DIR 036h Read/write Reset with PUC
Port Select P6SEL 037h Read/write Reset with PUC
Port Select 2 P6SEL2 046h Read/write Reset with PUC
Resistor Enable P6REN 013h Read/write Reset with PUC

P7 Input P7IN 038h Read only -
Output P70UT 03Ah Read/write Unchanged
Direction P7DIR 03Ch Read/write Reset with PUC
Port Select P7SEL 03Eh Read/write Reset with PUC
Port Select 2 P7SEL2 047h Read/write Reset with PUC
Resistor Enable P7REN 014h Read/write Reset with PUC

P8 Input P8IN 039h Read only -
Output P8OUT 03Bh Read/write Unchanged
Direction P8DIR 03Dh Read/write Reset with PUC
Port Select P8SEL 03Fh Read/write Reset with PUC
Port Select 2 P8SEL2 048h Read/write Reset with PUC
Resistor Enable PS8REN 015h Read/write Reset with PUC

8-8 Digital I/0

Chapter 9

Supply Voltage Supervisor

This chapter describes the operation of the SVS. The SVS is implemented in
selected MSP430x2xx devices.

Topic Page
Bl OV IMIECEHER 0 000000000000000000000000000000000000000a0000C 9-2
9.2 SVSOperationcciiiiiiiiiiiiiiii it i i 9-4
9.3 SVSRegistersoiiiiiiiiiiiiiii it 9-7

9-1

SVS Introduction

9.1 SVS Introduction

The supply voltage supervisor (SVS) is used to monitor the AV supply
voltage or an external voltage. The SVS can be configured to set a flag or
generate a POR reset when the supply voltage or external voltage drops below
a user-selected threshold.

The SVS features include:

AV monitoring

Selectable generation of POR

Output of SVS comparator accessible by software
Low-voltage condition latched and accessible by software

14 selectable threshold levels

I Iy Iy N N

External channel to monitor external voltage

The SVS block diagram is shown in Figure 9-1.

9-2 Supply Voltage Supervisor

Figure 9—-1. SVS Block Diagram

SVSIN

VCC

Brownout
Reset

A 4

SVS Introduction

D—* SVS_POR
D
tReset ~ 50us
® SVSOUT >
D
G, s
Set SVSFG
L 4
! ! Reset
VLD PORON SVSON SVSOP SVSFG |[¢&—
| | SVSCTL Bits

Supply Voltage Supervisor 9-3

SVS Operation

9.2 SVS Operation

The SVS detects if the AV voltage drops below a selectable level. It can be
configured to provide a POR or set a flag, when a low-voltage condition occurs.
The SVS is disabled after a brownout reset to conserve current consumption.

9.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14
threshold levels (V(svs_i-)) for comparison with AVcc The SVS is off when
VLDx = 0 and on when VLDx > 0. The SVSON bit does not turn on the SVS.
Instead, it reflects the on/off state of the SVS and can be used to determine
when the SVS is on.

When VLDx = 1111, the external SVSIN channel is selected. The voltage on
SVSIN is compared to an internal level of approximately 1.25 V.

9.2.2 SVS Comparator Operation

A low-voltage condition exists when AV¢c drops below the selected threshold
or when the external voltage drops below its 1.25-V threshold. Any low-voltage
condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If
PORON = 1, a POR is generated when SVSFG is set. If PORON = 0, a
low-voltage condition sets SVSFG, but does not generate a POR.

The SVSFG bit is latched. This allows user software to determine if a
low-voltage condition occurred previously. The SVSFG bit must be reset by
user software. If the low-voltage condition is still present when SVSFG is reset,
it will be immediately set again by the SVS.

9-4 Supply Voltage Supervisor

SVS Operation

9.2.3 Changing the VLDx Bits

When the VLDx bits are changed from zero to any non-zero value there is a
automatic settling delay tysvson) implemented that allows the SVS circuitry to
settle. The tyisvson) delay is approximately 50 us. During this delay, the SVS
will not flag a low-voltage condition or reset the device, and the SVSON bit is
cleared. Software can test the SVSON bit to determine when the delay has
elapsed and the SVS is monitoring the voltage properly. Writing to SVSCTL
while SVSON = 0 will abort the SVS automatic settling delay, tysvson), and
switch the SVS to active mode immediately. In doing so, the SVS circuitry
might not be settled, resulting in unpredictable behavior.

When the VLDx bits are changed from any non-zero value to any other
non-zero value the circuitry requires the time tggye to settle. The settling time
tsetile IS @ maximum of ~12 us. See the device-specific data sheet. There is no
automatic delay implemented that prevents SVSFG to be set or to prevent a
reset of the device. The recommended flow to switch between levels is shown
in the following code.

; Enable SVS for the first time:
MOV.B #080h, &SVSCTL ; Level 2.8V, do not cause POR

; Change SVS level
MOV.B #000h, &SVSCTL ; Temporarily disable SVS
MOV.B #018h, &SVSCTL ; Level 1.9V, cause POR

Supply Voltage Supervisor 9-5

SVS Operation

9.2.4 SVS Operating Range

Each SVS level has hysteresis to reduce sensitivity to small supply voltage
changes when AVc is close to the threshold. The SVS operation and
SVS/Brownout interoperation are shown in Figure 9-2.

Figure 9-2. Operating Levels for SVS and Brownout/Reset Circuit

A Software Sets VLD>0
AVCC —————————————
v _Whyssvs T 7 NN R N _
(SVS_IT-) | — I e i S e - - ————— — — —
v
(SVSstart) AL G S A A s N
V(B_IT—) $::: - _ _ _ I . LI llClTC’"’"’"""’ ™M ——gp——/-—
\EC(start) [0 o e T
Brown- >
Brownout
-+ Region_» I~ ROu_t >
Brownout egion
| T
0 >
| » < N <
t t
SvsouT d(BOR) <«——— SVSCCircuit Actve —» d(BOR)
1 T —
O - ta(svson 4(SVSR) >
Set SVS_POR >
1 — — —_— —
0 >
|
undefined

9-6 Supply Voltage Supervisor

SVS Registers

9.3 SVS Registers
The SVS registers are listed in Table 9-1.
Table 9-1. SVS Registers

Register Short Form Register Type Address Initial State

SVS Control Register SVSCTL Read/write 056h Reset with BOR

SVSCTL, SVS Control Register

7 6 5 4 3 2 1 0
VLDx PORON SVSON SVSOP SVSFG
rw—0T rw-0t rw-0t rw—0t rw—0t rt rt rw-0t

t Reset by a brownout reset only, not by a POR or PUC.

VLDx Bits Voltage level detect. These bits turn on the SVS and select the nominal SVS
7-4 threshold voltage level. See the device—specific data sheet for parameters.
0000 SVSis off
0001 19V
0010 21V
0011 2.2V
0100 2.3V
0101 24V
0110 25V
0111 265V
1000 2.8V
1001 29V
1010 3.05
1011 3.2V
1100 3.35V
1101 3.5V
1110 3.7V
1111 Compares external input voltage SVSIN to 1.25 V.

PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.
0 SVSFG does not cause a POR
1 SVSFG causes a POR

SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn
on the SVS. The SVS is turned on by setting VLDx > 0.
0 SVS is Off
1 SVSis On

SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.

0 SVS comparator output is low
1 SVS comparator output is high

SVSFG Bit 0 SVS flag. This bit indicates a low voltage condition. SVSFG remains set after
a low voltage condition until reset by software.
0 No low voltage condition occurred
1 A low condition is present or has occurred

Supply Voltage Supervisor 9-7

9-8 Supply Voltage Supervisor

Chapter 10

Watchdog Timer+

The watchdog timer+ (WDT+) is a 16-bit timer that can be used as a watchdog

or as an interval timer. This chapter describes the WDT+ The WDT+ is
implemented in all MSP430x2xx devices.

Topic Page
10.1 Watchdog Timer+ Introductioncoiiiiiiiiinnns 10-2
10.2 Watchdog Timer+ Operationviiiiiiinininnnnnnn. 10-4
10.3 Watchdog Timer+ Registerscooiiiiiiiiiiiinnneann. 10-7

10-1

Watchdog Timer+ Introduction

10.1 Watchdog Timer+ Introduction

The primary function of the watchdog timer+ (WDT+) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer+ module include:

Four software-selectable time intervals

Watchdog mode

Interval mode

Access to WDT+ control register is password protected
Control of RST/NMI pin function

Selectable clock source

Can be stopped to conserve power

U U uJ o d d oo

Clock fail-safe feature

The WDT+ block diagram is shown in Figure 10-1.

Note: Watchdog Timer+ Powers Up Active

After a PUC, the WDT+ module is automatically configured in the watchdog
mode with an initial 32768 clock cycle reset interval using the DCOCLK. The
user must setup or halt the WDT+ prior to the expiration of the initial reset
interval.

10-2 Watchdog Timer+

Watchdog Timer+ Introduction

Figure 10-1. Watchdog Timer+ Block Diagram

WDTCTL
MDBA
Q6 | MSB
° 0 — <«
it WDTQn 5 Q9
< : Y 1 —Ppp <4—
Flag] Q13
! Q15 0
<
0 |€4¢— > <
T | C 16-bit 1 Password
Pulse Counter > Compare <
Generator A 1
—|8 0 —p <—
Clear 1 —Ppp <4— 16-bit
PUC
:;D (Asyn) | LK o ol =
| Eau Write Enable
. 1 Low Byte —
Fail-Safe R/W
MCLK P Logic s S
SMCLK p 1 — | WDTHOLD
ACLK 4 1 WDTNMIES
| WDTNMI
— 1A EN
—WDTTMSEL
WDTCNTCL
L WDTSSEL
WDTIS1
WDTISO0 LSB
| A4

Clock —— P MCLK Active
Request | ————p SMCLK Active
Loge | 5 AGLKActive

Watchdog Timer+ 10-3

Watchdog Timer+ Operation

10.2 Watchdog Timer+ Operation

The WDT+ module can be configured as either a watchdog or interval timer
with the WDTCTL register. The WDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit, password-protected,
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write to WDTCTL with any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte. The WDT+ counter clock
should be slower or equal than the system (MCLK) frequency.

10.2.1 Watchdog timer+ Counter

The watchdog timer+ counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled and time intervals
selected through the watchdog timer+ control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

10.2.2 Watchdog Mode

After a PUC condition, the WDT+ module is configured in the watchdog mode
with an initial 32768 cycle reset interval using the DCOCLK. The user must
setup, halt, or clear the WDT+ prior to the expiration of the initial reset interval
or another PUC will be generated. When the WDT+ is configured to operate
in watchdog mode, either writing to WDTCTL with an incorrect password, or
expiration of the selected time interval triggers a PUC. A PUC resets the WDT+
to its default condition and configures the RST/NMI pin to reset mode.

10.2.3 Interval Timer Mode

10-4

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can
be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Watchdog Timer+

Watchdog Timer+ Operation

Note: Modifying the Watchdog timer+

The WDT+ interval should be changed together with WDTCNTCL =1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT+ should be halted before changing the clock source to avoid a
possible incorrect interval.

10.2.4 Watchdog Timer+ Interrupts
The WDT+ uses two bits in the SFRs for interrupt control.
(1 The WDT+ interrupt flag, WDTIFG, located in IFG1.0
(1 The WDT+ interrupt enable, WDTIE, located in IE1.0

When using the WDT+ in the watchdog mode, the WDTIFG flag sources a
reset vector interrupt. The WDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer+ initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using the WDT+ in interval timer mode, the WDTIFG flag is set after the
selected time interval and requests a WDT+ interval timer interrupt if the
WDTIE and the GIE bits are set. The interval timer interrupt vector is different
from the reset vector used in watchdog mode. In interval timer mode, the
WDTIFG flag is reset automatically when the interrupt is serviced, or can be
reset with software.

10.2.5 Watchdog Timer+ Clock Fail-Safe Operation

The WDT+ module provides a fail-safe clocking feature assuring the clock to
the WDT+ cannot be disabled while in watchdog mode. This means the
low-power modes may be affected by the choice for the WDT+ clock. For
example, if ACLK is the WDT+ clock source, LPM4 will not be available,
because the WDT+ will prevent ACLK from being disabled. Also, if ACLK or
SMCLK fail while sourcing the WDT+, the WDT+ clock source is automatically
switched to MCLK. In this case, if MCLK is sourced from a crystal, and the
crystal has failed, the fail-safe feature will activate the DCO and use it as the
source for MCLK.

When the WDT+ module is used in interval timer mode, there is no fail-safe
feature for the clock source.

Watchdog Timer+ 10-5

Watchdog Timer+ Operation

10.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how the WDT+ should be
configured. For example, the WDT+ should not be configured in watchdog
mode with SMCLK as its clock source if the user wants to use low-power mode
3 because the WDT+ will keep SMCLK enabled for its clock source, increasing
the current consumption of LPM3. When the watchdog timer+ is not required,
the WDTHOLD bit can be used to hold the WDTCNT, reducing power
consumption.

10.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog
MOV #WDTPW+WDTCNTCL, &WDTCTL

; Change watchdog timer+ interval
MOV #WDTPW+WDTCNTL+WDTSSEL, &WDTCTL

; Stop the watchdog
MOV #WDTPW+WDTHOLD, &WDTCTL

; Change WDT+ to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTISO, &WDTCTL

10-6 Watchdog Timer+

10.3 Watchdog Timer+ Registers

The WDT+ registers are listed in Table 10-1.

Table 10-1. Watchdog timer+ Registers

Watchdog Timer+ Registers

Register Short Form Register Type Address Initial State
Watchdog timer+ control register WDTCTL Read/write 0120h 06900h with PUC
SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUCt

t WDTIFG is reset with POR

Watchdog Timer+ 10-7

Watchdog Timer+ Registers

WDTCTL, Watchdog Timer+ Register

15 14 13 12 11 10 9 8
Read as 069h
WDTPW, must be written as 05Ah
7 6 5 4 3 2 1 0
WDTHOLD | WDTNMIES | WDTNMI | WDTTMSEL | WDTCNTCL | WDTSSEL WDTISx
rw-0 rw-0 rw-0 rw-0 ro(w) rw-0 rw—0 rw-0
WDTPW Bits Watchdog timer+ password. Always read as 069h. Must be written as 05Ah,
15-8 or a PUC will be generated.
WDTHOLD Bit7 Watchdog timer+ hold. This bit stops the watchdog timer+. Setting
WDTHOLD = 1 when the WDT+ is not in use conserves power.
0 Watchdog timer+ is not stopped
1 Watchdog timer+ is stopped
WDTNMIES Bit 6 Watchdog timer+ NMI edge select. This bit selects the interrupt edge for the
NMI interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify
this bit when WDTIE = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge
WDTNMI Bit 5 Watchdog timer+ NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function
WDTTMSEL Bit 4 Watchdog timer+ mode select
0 Watchdog mode
1 Interval timer mode
WDTCNTCL Bit 3 Watchdog timer+ counter clear. Setting WDTCNTCL = 1 clears the count
value to 0000h. WDTCNTCL is automatically reset.
0 No action
1 WDTCNT = 0000h
WDTSSEL Bit2 Watchdog timer+ clock source select
0 SMCLK
1 ACLK
WDTISx Bits Watchdog timer+ interval select. These bits select the watchdog timer+
1-0 interval to set the WDTIFG flag and/or generate a PUC.

00 Watchdog clock source /32768
01 Watchdog clock source /8192
10 Watchdog clock source /512

11 Watchdog clock source /64

10-8 Watchdog Timer+

Watchdog Timer+ Registers

IE1, Interrupt Enable Register 1

7 5 4 3 2 1 0
NMIIE WDTIE
rw—0
Bits These bits may be used by other modules. See device-specific data sheet.
7-5
NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this
bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific data sheet.
3-1
WDTIE Bit 0 Watchdog timer+ interrupt enable. This bit enables the WDTIFG interrupt for

interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV . B
or CLR.B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Watchdog Timer+ 10-9

Watchdog Timer+ Registers

IFG1, Interrupt Flag Register 1

7 5 4 3 2 1 0
NMIIFG WDTIFG
rw-0 rw—(0)
Bits These bits may be used by other modules. See device-specific data sheet.
7-5
NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear NMIIFG by
using BIS.B orBIC.B instructions, rather than MOV.B or CLR. B instructions.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific data sheet.
3-1
WDTIFG Bit 0 Watchdog timer+ interrupt flag. In watchdog mode, WDTIFG remains set until

10-10

reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or can be reset by software. Because other bits in IFG1
may be used for other modules, it is recommended to clear WDTIFG by using
BIS.B or BIC.B instructions, rather than MOV.B or CLR. B instructions.

0 No interrupt pending

1 Interrupt pending

Watchdog Timer+

Chapter 11

Hardware Multiplier

This chapter describes the hardware multiplier. The hardware multiplier is
implemented in some MSP430x2xx devices.

Topic Page
11.1 Hardware Multiplier Introduction 11-2
11.2 Hardware Multiplier Operationo 11-3
11.3 Hardware Multiplier Registersccciiiiiiiiiinnnnns. 11-7

Hardware Multiplier Introduction

11.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU.
This means, its activities do not interfere with the CPU activities. The multiplier
registers are peripheral registers that are loaded and read with CPU
instructions.

The hardware multiplier supports:

J
-
a
-
-

Unsigned multiply

Signed multiply

Unsigned multiply accumulate
Signed multiply accumulate

16x 16 bits, 16x 8 bits, 8x 16 bits, 8 x 8 bits

The hardware multiplier block diagram is shown in Figure 11-1.

Figure 11-1. Hardware Multiplier Block Diagram

11-2

15

rw

MPY 130h

MPYS 132h

15 rw 0

MAC 134h

> OP1 OP2 138h

~~ N~

MACS 136h

Accessible
Register

MPY = 0000

16 x 16 Multipiler

MACS MPYS A \ 32-bit Adder /

\ Multiplexer /

MAC
MPY, MPYS §| l? MAC, MACS
\ 32-bit Multiplexer /

~~

N~

SUMEXT 13Eh

S RESHI 13Ch RESLO 13Ah

15

r

0 31 rw w 0

Hardware Multiplier

Hardware Multiplier Operation

11.2 Hardware Multiplier Operation

The hardware multiplier supports unsigned multiply, signed multiply, unsigned
multiply accumulate, and signed multiply accumulate operations. The type of
operation is selected by the address the first operand is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and
three result registers, RESLO, RESHI, and SUMEXT. RESLO stores the low
word of the result, RESHI stores the high word of the result, and SUMEXT
stores information about the result. The result is ready in three MCLK cycles
and can be read with the next instruction after writing to OP2, except when
using an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

11.2.1 Operand Registers

The operand one register OP1 has four addresses, shown in Table 11-1, used
to select the multiply mode. Writing the first operand to the desired address
selects the type of multiply operation but does not start any operation. Writing
the second operand to the operand two register OP2 initiates the multiply
operation. Writing OP2 starts the selected operation with the values stored in
OP1 and OP2. The result is written into the three result registers RESLO,
RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to re-write the
OP1 value to perform the operations.

Table 11-1. OP1 addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate
0136h MACS Signed multiply accumulate

Hardware Multiplier 11-3

Hardware Multiplier Operation

11.2.2 Result Registers

The result low register RESLO holds the lower 16-bits of the calculation result.
The result high register RESHI contents depend on the multiply operation and
are listed in Table 11-2.

Table 11-2. RESHI Contents

Mode RESHI Contents
MPY Upper 16-bits of the result
MPYS The MSB is the sign of the result. The remaining bits are the

upper 15-bits of the result. Two’s complement notation is used
for the result.

MAC Upper 16-bits of the result

MACS Upper 16-bits of the result. Two’s complement notation is used
for the result.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 11-3.

Table 11-3. SUMEXT Contents

Mode SUMEXT
MPY SUMEXT is always 0000h
MPYS SUMEXT contains the extended sign of the result

00000h Result was positive or zero
OFFFFh Result was negative

MAC SUMEXT contains the carry of the result
0000h No carry for result
0001h Result has a carry

MACS SUMEXT contains the extended sign of the result
00000h Result was positive or zero
OFFFFh Result was negative

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in the
MACS mode. The accumulator range for positive numbers is 0 to 7FFF FFFFh
and for negative numbers is OFFFF FFFFh to 8000 0000h. An underflow
occurs when the sum of two negative numbers yields a result that is in the
range for a positive number. An overflow occurs when the sum of two positive
numbers yields a result that is in the range for a negative number. In both of
these cases, the SUMEXT register contains the sign of the result, OFFFFh for
overflow and 0000h for underflow. User software must detect and handle
these conditions appropriately.

11-4 Hardware Multiplier

Hardware Multiplier Operation

11.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers because the assembler will not allow .B access to
word registers when using the labels from the standard definitions file.

There is no sign extension necessary in software. Accessing the multiplier with
a byte instruction during a signed operation will automatically cause a sign
extension of the byte within the multiplier module.

; 16x16 Unsigned Multiply
MOV #01234h, &MPY ; Load first operand
MOV #05678h, &0P2 ; Load second operand
; . ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B #012h, &0130h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; A ; Process results

; 16x16 Signed Multiply
MOV #01234h, &MPYS ; Load first operand
MOV #05678h, &0P2 ; Load 2nd operand

; c. ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV.B #012h,&0132h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; e ; Process results

; 16x16 Unsigned Multiply Accumulate
MOV #01234h,&MAC ; Load first operand
MOV #05678h, &0P2 ; Load 2nd operand

; Ce. ; Process results

; 8x8 Unsigned Multiply Accumulate. Absolute addressing
MOV.B #012h,&0134h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; .. ; Process results

; lexl6 Signed Multiply Accumulate
MOV #01234h,&MACS ; Load first operand
MOV #05678h, &0P2 ; Load 2nd operand

; . ; Process results

; 8x8 Signed Multiply Accumulate. Absolute addressing
MOV.B #012h,&0136h ; Load first operand
MOV.B #034h,R5 ; Temp. location for 2nd operand
MOV R5, &0P2 ; Load 2nd operand

; .. ; Process results

Hardware Multiplier 11-5

Hardware Multiplier Operation

11.2.4 Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressing mode to access the
result registers, At least one instruction is needed between loading the second
operand and accessing one of the result registers:

; Access multiplier results with indirect addressing

MOV #RESLO, R5

MOV &OPER1, &MPY
MOV &OPER2, &0P2

NOP
MOV @R5+, &xXXX
MOV @R5, &xXxXxX

11.2.5 Using Interrupts

11-6

I

7

7

’

RESLO address in R5 for indirect
Load 1lst operand

Load 2nd operand

Need one cycle

Move RESLO

Move RESHI

If an interrupt occurs after writing OP1, but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier or do not use the multiplier in
interrupt service routines.

; Disable interrupts

DINT
NOP

MOV #xxh, &MPY ;
MOV #xxh, &OP2 ;

EINT

Hardware Multiplier

’
’
I

I

before using the hardware multiplier

Disable interrupts
Required for DINT
Load 1st operand

Load 2nd operand

Interrupts may be enable before

Process results

11.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 11-4.

Table 11-4. Hardware Multiplier Registers

Hardware Multiplier Registers

Register Short Form Register Type Address Initial State
Operand one - multiply MPY Read/write 0130h Unchanged
Operand one - signed multiply MPYS Read/write 0132h Unchanged
Operand one - multiply accumulate MAC Read/write 0134h Unchanged
Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged
Operand two OoP2 Read/write 0138h Unchanged
Result low word RESLO Read/write 013Ah Undefined
Result high word RESHI Read/write 013Ch Undefined
Sum extension register SUMEXT Read 013Eh Undefined

Hardware Multiplier 11-7

11-8 Hardware Multiplier

Chapter 12

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes the operation of the Timer_A of the MSP430 2xx device
family.

Topic Page
121 Timer Alntroductioncciiiiiiiii i iietiariarnannnnnns 12-2
122 Timer_AOperationcciiiiiiiiiiiiianrannnanrnannenn 12-4
12.3 Timer_ARegistersciiiiiiiiiii it i aaananns 12-19

12-1

Timer_A Introduction

12.1 Timer_A Introduction

12-2

Timer_A

Timer_A is a 16-bit timer/counter with three capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

J
4
a
J
a
J

Asynchronous 16-bit timer/counter with four operating modes
Selectable and configurable clock source

Two or three configurable capture/compare registers
Configurable outputs with PWM capability

Asynchronous input and output latching

Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 12-1.

Note: Use of the Word Count

Countis used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action will not take place.

Timer_A Introduction

Figure 12-1. Timer_A Block Diagram

. Timer Block
TASSELx IDx Timer Clock MCx
i 1 2 i
TACLK 00 i 16-bit Timer
Divider TAR —p| Count € EQUO
ACLK o1 1/2/4/8 4—] Mode
Clear RC
SMCLK 10
INCLK 11 \—> Set TAIFG
TACLR
CCRO
CCR1
CCR2
CCISx CMx
CCI2A Capture u
CCl2B Mode 15 0
TACCR2
GND Timer Clock
vCce {}
Comparator 2
EQU2 CAP
A
SCCl m— Y EN 0
Set TACCR2
1 CCIFG
ouT)
Qutput ._T Sot
> Unit2 D =€t Q OUT2 Signal
EQUO Timer Clock —

Reset

D>

OUTMODx

Timer_A 12-3

Timer_A Operation

12.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

12-4

Timer_A

The timer clock can be sourced from ACLK, SMCLK, or externally via TACLK
or INCLK. The clock source is selected with the TASSELX bits. The selected
clock source may be passed directly to the timer or divided by 2, 4, or 8, using
the IDx bits. The timer clock divider is reset when TACLR is set.

Timer_A Operation

12.2.2 Starting the Timer
The timer may be started, or restarted in the following ways:
[The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCRO. The timer may then be restarted by writing a
nonzero value to TACCRQO. In this scenario, the timer starts incrementing
in the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 12-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 12—-1.Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of
TACCRO.

10 Continuous The timer repeatedly counts from zero to OFFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of
TACCRO and back down to zero.

Timer_A 12-5

Timer_A Operation

Up Mode

The up mode is used if the timer period must be different from OFFFFh counts.
The timer repeatedly counts up to the value of compare register TACCRO,
which defines the period, as shown in Figure 12-2. The number of timer
counts in the period is TACCRO+1. When the timer value equals TACCRO the
timer restarts counting from zero. If up mode is selected when the timer value
is greater than TACCRO, the timer immediately restarts counting from zero.

Figure 12-2. Up Mode

OFFFFh
TACCRO

Oh

The TACCRO CCIFG interrupt flag is set when the timer counts to the TACCRO
value. The TAIFG interrupt flag is set when the timer counts from TACCRO to
zero. Figure 12-3 shows the flag set cycle.

Figure 12-3. Up Mode Flag Setting

e /_J\ T\
i (
Ti CCRO-1 CCRO 1 Oh 1h 4 CCRO-1 CCRO Oh
imer X X X X::() X

Set TAIFG |

Set TACCRO CCIFG

Changing the Period Register TACCRO

When changing TACCRO while the timer is running, if the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

12-6 Timer_A

Timer_A Operation

Continuous Mode

In the continuous mode, the timer repeatedly counts up to OFFFFh and restarts
from zero as shown in Figure 12-4. The capture/compare register TACCRO
works the same way as the other capture/compare registers.

Figure 12-4. Continuous Mode

OFFFFh

Oh

The TAIFG interrupt flag is set when the timer counts from OFFFFh to zero.
Figure 12-5 shows the flag set cycle.

Figure 12-5. Continuous Mode Flag Setting

({ i

Timer X FFFEh X FFFFh X oh X 1th)Cz(’ X Frren Y FFFFh Y oh

) |

I I

))

Set TAIFG I

Timer_A 12-7

Timer_A Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRXx register in the
interrupt service routine. Figure 12—6 shows two separate time intervals ty and
t1 being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three independent time intervals or output frequencies can be
generated using all three capture/compare registers.

Figure 12-6. Continuous Mode Time Intervals

12-8

OFFFF

Timer_A

TACCROa / /

TACCR1b TACCRI1c

TACCROb TACCROC TACCROd

TACCR1a < TACCR1d

to to to

Time intervals can be produced with other modes as well, where TACCRO is
used as the period register. Their handling is more complex since the sum of
the old TACCRXx data and the new period can be higher than the TACCRO
value. When the previous TACCRXx value plus ty is greater than the TACCRO
data, TACCRO + 1 must be subtracted to obtain the correct time interval.

Up/Down Mode

Timer_A Operation

The up/down mode is used if the timer period must be different from OFFFFh
counts, and if a symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCRO and back down to zero,
as shown in Figure 12-7. The period is twice the value in TACCRO.

Figure 12-7. Up/Down Mode

OFFFFh
TACCRO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the timer clock divider.

In up/down mode, the TACCRO CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCRO CCIFG interrupt flag is set when the timer counts from TACCRO - 1
to TACCRO, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 12-8 shows the flag set cycle.

Figure 12-8. Up/Down Mode Flag Setting

Timer Clock
Timer
Up/Down
Set TAIFG

Set TACCRO CCIFG

I U N an N A N AN A N an N an

(
XCCRO—1 CCRO XCCRo-1XCCRo-2)C;’(’ X 1h oh

)

(¢
)

({¢
R4

Timer_A 12-9

Timer_A Operation

Changing the Period Register TACCRO

Use of the Up/Down

When changing TACCRO while the timer is running, and counting in the down
direction, the timer continues its descent until it reaches zero. The value in
TACCRO is latched into TACLO immediately, however the new period takes
effect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period before counting down. When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer_A Output Unif). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 12-9 the tygaq is:

tgead = ttimer X (TACCR1 — TACCR2)

With: tgead Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TACCRx Content of capture/compare register x

The TACCRXx registers are not buffered. They update immediately when
written to. Therefore, any required dead time will not be maintained
automatically.

Figure 12-9. Output Unit in Up/Down Mode

12-10

OFFFFh
TACCRO
TACCR1
TACCR2 /
Oh
» &4 | P 4 DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQU1 EQUA1 EQUA1 EQU1 Interrupt Events
TAIFG EQUO TAIFG EQUO p
EQU2 EQU2 EQU2 EQU2
Timer_A

Timer_A Operation

12.2.4 Capture/Compare Blocks

Capture Mode

Two or three identical capture/compare blocks, TACCRX, are present in
Timer_A. Any of the blocks may be used to capture the timer data, or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

[The timer value is copied into the TACCRX register
[d The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB. See
the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 12-10.

Figure 12-10. Capture Signal (SCS =1)

Timer Clock

Timer

CCl

Capture

Set TACCRx CCIFG

T X 2 Yt X0 e Y2 Y s Y e X
[1]

[\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 12-11. COV must
be reset with software.

Timer_A 12-11

Timer_A Operation

Figure 12—-11.Capture Cycle

in Register TACCTLx

Idle

Capture Capture Read

No Capture Read
Capture TaFI)(en Taken
Taken Capture

Capture Read and No Capture

Capture
Clear Bit COV

Second
Capture
Taken
COV =1

Idle

Capture

Capture Initiated by Software

Compare Mode

12-12

Timer_A

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCIS1 = 1 and toggles bit CCISO to switch the
capture signal between Vg and GND, initiating a capture each time CCISO
changes state:

MOV #CAP+SCS+CCIS1+CM_ 3, &TACCTLx ; Setup TACCTLxX
XOR #CCISO0, &TACCTLx ; TACCTLx = TAR

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRXx:

(O Interrupt flag CCIFG is set
[Internal signal EQUx =1
O EQUx affects the output according to the output mode

(O The input signal CCl is latched into SCCI

12.2.5 Output Unit

Timer_A Operation

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.

Output Modes

The output modes are defined by the OUTMODXx bits and are described in
Table 12—-2. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0, because EQUx = EQUO.

Table 12-2. Output Modes

OUTMODx

Mode

Description

000

001

010

011

100

101

110

111

Output

Set

Toggle/Reset

Set/Reset

Toggle

Reset

Toggle/Set

Reset/Set

The output signal OUTx is defined by the
OUTXx bit. The OUTx signal updates
immediately when OUTx is updated.

The output is set when the timer counts
to the TACCRXx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

The output is toggled when the timer
counts to the TACCRx value. It is reset
when the timer counts to the TACCRO
value.

The output is set when the timer counts
to the TACCRXx value. It is reset when the
timer counts to the TACCRO value.

The output is toggled when the timer
counts to the TACCRXx value. The output
period is double the timer period.

The output is reset when the timer counts
to the TACCRXx value. It remains reset
until another output mode is selected and
affects the output.

The output is toggled when the timer
counts to the TACCRXx value. It is set
when the timer counts to the TACCRO
value.

The output is reset when the timer counts
to the TACCRXx value. It is set when the
timer counts to the TACCRO value.

Timer_A 12-13

Timer_A Operation

Output Example—Timer in Up Mode

Figure 12-12. Output Example—Timer in Up Mode

OFFFFh
TACCRO

TACCRt

Oh

EQUO
TAIFG

12-14 Timer_A

The OUTx signal is changed when the timer counts up to the TACCRXx value,
and rolls from TACCRO to zero, depending on the output mode. An example
is shown in Figure 12-12 using TACCRO and TACCR1.

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

EQU1

EQUO
TAIFG

EQUA

‘ Output Mode 6: Toggle/Set

‘ Output Mode 7: Reset/Set

EQUO
TAIFG

Interrupt Events

Timer_A Operation

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCRO values, depending on the output mode. An example is shown in

Figure 12—13 using TACCRO and TACCR1.

Figure 12-13. Output Example—Timer in Continuous Mode

OFFFFh
TACCRO
TACCRH1
Oh
Qutput Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TAIFG EQU1 EQUO TAIFG EQU1 EQUO Interrupt Events

Timer_A

12-15

Timer_A Operation

Output Example—Timer in Up/Down Mode

The OUTXx signal changes when the timer equals TACCRX in either count
direction and when the timer equals TACCRO, depending on the output mode.
An example is shown in Figure 12-14 using TACCRO and TACCR2.

Figure 12-14. Output Example—Timer in Up/Down Mode

OFFFFh
TACCRO
TACCR2
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
EQU2 EQU2 EQU2 EQU2
TAIFG EQUO TAIFG EQUO Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODXx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TACCTLX ; Set output mode=7
BIC #OUTMODx, &TACCTLx ; Clear unwanted bits

12-16 Timer_A

Timer_A Operation

12.2.6 Timer_A Interrupts

TACCRO Interrupt

Two interrupt vectors are associated with the 16-bit Timer_A module:
(1 TACCRQO interrupt vector for TACCRO CCIFG
[TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRX register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRXx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

The TACCRO CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 12-15. The TACCRO CCIFG
flag is automatically reset when the TACCRO interrupt request is serviced.

Figure 12-15. Capture/Compare TACCRO Interrupt Flag

Capture

EQUO
CAP

:)_ D Set Q CCIE.’:)—} IRQ, Interrupt Service Requested

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag will generate another interrupt.

Timer_A 12-17

Timer_A Operation

TAIV Software Example

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

(] Capture/compare block TACCRO 11 cycles
[0 Capture/compare blocks TACCR1, TACCR2 16 cycles
[Timer overflow TAIFG 14 cycles
; Interrupt handler for TACCRO CCIFG. Cycles

CCIFG_0_HND
; e ; Start of handler Interrupt latency 6
RETI

; Interrupt handler for TAIFG, TACCR1l and TACCR2 CCIFG.

TA_HND .. ; Interrupt latency 6
ADD &TAIV, PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1 HND ; Vector 2: TACCR1 2
JMP CCIFG_2 HND ; Vector 4: TACCR2 2
RETI ; Vector 6: Reserved 5
RETI ; Vector 8: Reserved 5
TAIFG HND ; Vector 10: TAIFG Flag
; Task starts here
RETI 5
CCIFG 2 HND ; Vector 4: TACCR2
; Task starts here
RETI ; Back to main program 5
CCIFG_1 HND ; Vector 2: TACCR1
; Task starts here
RETI ; Back to main program 5

12-18 Timer_A

12.3 Timer_A Registers

The Timer_A registers are listed in Table 12-3.

Table 12-3.Timer_A Registers

Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR
Timer_A counter TAR Read/write 0170h Reset with POR
Timer_A capture/compare control 0 TACCTLO Read/write 0162h Reset with POR
Timer_A capture/compare 0 TACCRO Read/write 0172h Reset with POR
Timer_A capture/compare control 1 TACCTLA Read/write 0164h Reset with POR
Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR
Timer_A capture/compare control 2 TACCTL2t Read/write 0166h Reset with POR
Timer_A capture/compare 2 TACCR2t Read/write 0176h Reset with POR
Timer_A interrupt vector TAIV Read only 012Eh Reset with POR

T Not present on MSP430x20xx Devices

Timer_A 12-19

Timer_A Registers

TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8
Unused TASSELXx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TACLR TAIE TAIFG
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rw—(0)
Unused Bits Unused
15-10
TASSELXx Bits Timer_A clock source select
9-8 00 TACLK
01 ACLK
10 SMCLK
11 INCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 N
o1 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_A is not in use conserves
5-4 power.
00 Stop mode: the timer is halted.
01 Up mode: the timer counts up to TACCRO.
10 Continuous mode: the timer counts up to OFFFFh.
11 Up/down mode: the timer counts up to TACCRO then down to 0000h.
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count
direction. The TACLR bit is automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit0 Timer_A interrupt flag

12-20 Timer_A

0 No interrupt pending
1 Interrupt pending

TAR, Timer_A Register

Timer_A Registers

15 14 13 12 1 10 9 8
TARx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TARx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
TARX Bits Timer_A register. The TAR register is the count of Timer_A.
15-0
TACCRXx, Timer_A Capture/Compare Register x
15 14 13 12 11 10 9 8
TACCRx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TACCRx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
TACCRXx Bits Timer_A capture/compare register.

15-0 Compare mode: TACCRXx holds the data for the comparison to the timer value

in the Timer_A Register, TAR.

Capture mode: The Timer_A Register, TAR, is copied into the TACCRXx

register when a capture is performed.

Timer_A 12-21

Timer_A Registers

TACCTLXx, Capture/Compare Control Register

15

14

13 12 11 10 9 8

CMx

CCISx SCS SCCI Unused CAP

rw—(0)

rw—(0) rw—(0) rw—(0) r r0 rw—(0)

OUTMODx CCIE CCl ouT cov CCIFG

rw—(0)

CMx

CCIsx

SCS

SCCI

Unused

CAP

OUTMODx

12-22

rw—(0)

Bit
15-14

Bit
13-12

Bit 11

Bit 10

Bit 9
Bit 8

Bits
7-5

Timer_A

rw—(0) rw—(0) r rw—(0) rw—(0) rw—(0)

Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

Capture/compare input select. These bits select the TACCRXx input signal.
See the device-specific data sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 Ve

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUx signal and can be read via this bit

Unused. Read only. Always read as 0.

Capture mode
0 Compare mode
1 Capture mode

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCRO because
EQUx = EQUO.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE

CCl
ouT

cov

CCIFG

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Timer_A Registers

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 1 10 9 8
0 0 0 0 0 0 0 0 ‘
ro ro r0 ro ro r0 r0 ro
7 6 5 4 3 2 1 0
0 0 0 0 TAIVx] ‘
r0 r0 r0 r0 r—(0) r—(0) r—(0) r0
TAIVx Bits Timer_A Interrupt Vector value
15-0

Interrupt

TAIV Contents Interrupt Source Interrupt Flag Priority

00h No interrupt pending -

02h Capture/compare 1 TACCR1 CCIFG Highest

04h Capture/compare 2T TACCR2 CCIFG

06h Reserved -

08h Reserved -

OAh Timer overflow TAIFG

0Ch Reserved -

OEh Reserved - Lowest

T Not Implemented in MSP430x20xx, devices

Timer_A 12-23

12-24 Timer_A

Chapter 13

Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes the operation of the Timer_B of the MSP430 2xx device
family.

Topic Page
13.1 Timer Bintroduction ...ttt ierarnnnnnns 13-2
13.2 Timer BOperationc.oiiiiiiiiiii i annanreannenn 13-4
13.3 Timer_ BRegisterst it iaiiainnannns 13-20

13-1

Timer_B Introduction

13.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_B can support multiple capture/compares, PWM outputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

[Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

Selectable and configurable clock source
Three or seven configurable capture/compare registers
Configurable outputs with PWM capability

Double-buffered compare latches with synchronized loading

(I R Ny I

Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 13-1.

Note: Use of the Word Count

Countis used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

13.1.1 Similarities and Differences From Timer_A

13-2

Timer_B

Timer_B is identical to Timer_A with the following exceptions:

(1 The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
(O Timer_B TBCCRXx registers are double-buffered and can be grouped.
(1 All Timer_B outputs can be put into a high-impedance state.

(1 The SCCI bit function is not implemented in Timer_B.

Figure 13—1. Timer_B Block Diagram

Timer_B Introduction

i Timer Block
TBSSELx IDx Timer Clock MO
't 15 0 ki
TBCLK - @—— 00 i 16-bit Timer
ACLK 01 ?}Z}ig TBR RC < » f,,%‘g”e‘ € EQUO
Clear 8 10 12 16
SMeLK 10 CNTLx
—Do— 11
TBCLR
TBCLGRPx 00
01
T T Set TBIFG
10
Group »
Load Logic
CCRO
CCR1
CCR2
CCR3
CCR4
CCR5
CCISx CMx CCR6
CCI6A 00 Capture
cCleB o1 Mode 0
TBCCR6
GND 10 Timer Clock
VCC 11 {}
CLLDx Load
Ccl Group »| Compare Latch TBCL6
Load Logic
vee {}
TBR=0 :> Comparator 6
EQUO —
UP/DOWN — CCR4 — EQU6 | cap
f CCR1
0 Set TBCCR6
1 CCIFG
ouT I—T)
) Output
EQuo —p| Unit6 D Set Q|- OUT6 Signal
Timer Clock —
Reset
POR
OUTMODx

Timer_B

13-3

Timer_B Operation

13.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

13.2.1 16-Bit Timer Counter

TBR Length

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TBR will take effect immediately.

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLx bits. The maximum count value, TBRnay), for the selectable lengths
is OFFh, 03FFh, OFFFh, and OFFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

13-4

Timer_B

The timer clock can be sourced from ACLK, SMCLK, or externally via TBCLK
(TBCLK or inverted TBCLK). The clock source is selected with the TBSSELx
bits. The selected clock source may be passed directly to the timer or divided
by 2,4, or 8, using the IDx bits. The clock divider is reset when TBCLR is set.

Timer_B Operation

13.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
[The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCLO. The timer may then be restarted by loading a
nonzero value to TBCLO. In this scenario, the timer starts incrementing in
the up direction from zero.

13.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 13-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 13—-1.Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of

compare register TBCLO.

10 Continuous The timer repeatedly counts from zero to the value
selected by the CNTLx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCLO and then back down to zero.

Timer_B 13-5

Timer_B Operation

Up Mode

The up mode is used if the timer period must be different from TBR(max) counts.
The timer repeatedly counts up to the value of compare latch TBCLO, which
defines the period, as shown in Figure 13-2. The number of timer counts in
the period is TBCLO+1. When the timer value equals TBCLO the timer restarts
counting from zero. If up mode is selected when the timer value is greater than

TBCLO, the timer immediately restarts counting from zero.

Figure 13-2. Up Mode

TBR(max)
TBCLO

Oh

The TBCCRO CCIFG interrupt flag is set when the timer counts to the TBCLO
value. The TBIFG interrupt flag is set when the timer counts from TBCLO to
zero. Figure 13-3 shows the flag set cycle.

Figure 13-3. Up Mode Flag Setting

Timer Clock / \

A\

Timer X TBCLO-1} TBCLO

Set TBIFG

Set TBCCRO CCIFG

XTBCLO—1

TBCLO

Changing the Period Register TBCLO

13-6 Timer_B

When changing TBCLO while the timer is running and when the TBCLO load
event is immediate, CLLDO = 00, if the new period is greater than or equal to
the old period, or greater than the current count value, the timer counts up to
the new period. If the new period is less than the current count value, the timer
rolls to zero. However, one additional count may occur before the counter rolls

to zero.

Timer_B Operation

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts
from zero as shown in Figure 13-4. The compare latch TBCLO works the same
way as the other capture/compare registers.

Figure 13-4. Continuous Mode

TBR(max)

Oh

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero.
Figure 13-5 shows the flag set cycle.

Figure 13-5. Continuous Mode Flag Setting

Timer XTBR (mﬂﬂx TBR (mﬂlX on X n X—% XTer (mﬂﬂx TBR (mﬂj(oh
LC I

)

Set TBIFG |

Timer_B 18-7

Timer_B Operation

Use of the Continuous Mode

Figure 13-6. Continuous Mode Time Intervals

13-8

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 13-6 shows two separate time intervals ty and t1 being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies

can be generated using capture/compare registers.

TBCL1b TBCL1c
TBCLOb TBCLOC TBCLOd
TBR(max)
TBCL1a TBCL1d
TBCLOa / g

Oh
EQUO Interrupt

to to to
EQU1 Interrupt

t4 t4 t4

Timer_B

Time intervals can be produced with other modes as well, where TBCLO is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCLO value.
When the sum of the previous TBCLx value plus ty is greater than the TBCLO
data, TBCLO + 1 must be subtracted to obtain the correct time interval.

Up/Down Mode

Timer_B Operation

The up/down mode is used if the timer period must be different from TBRmax)
counts, and if a symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare latch TBCLO, and back down to zero, as
shown in Figure 13-7. The period is twice the value in TBCLO.

Note: TBCLO > TBR(max)

If TBCLO > TBR(mayx), the counter operates as if it were configured for
continuous mode. It does not count down from TBRyay) to zero.

Figure 13-7. Up/Down Mode

TBCLO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the clock divider.

In up/down mode, the TBCCRO CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCRO CCIFG interrupt flag is set when the timer counts from TBCLO-1 to
TBCLO, and TBIFG is set when the timer completes counting down from 0001h
to 0000h. Figure 13-8 shows the flag set cycle.

Figure 13-8. Up/Down Mode Flag Setting

(
Timer XTBCLO—1 TBCLO XTBCL0—1XTBCL0—2Xj‘(’ X 1h oh 1h
)

Up/Down
Set TBIFG

Set TBCCRO CCIFG

({4
4

(¢

))

({4

)

Timer_B 13-9

Timer_B Operation

Changing the Value of Period Register TBCLO

Use of the Up/Down

When changing TBCLO while the timer is running, and counting in the down
direction, and when the TBCLO load event is immediate, the timer continues
its descent until it reaches zero. The value in TBCCRO is latched into TBCLO
immediately; however, the new period takes effect after the counter counts
down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCLO, and the new period is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCLO is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer_B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 13-9 the tgg4q is:

tdead = ttimer X (TBCL1 — TBCL3)

With: tgeag Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 13-9. Output Unit in Up/Down Mode

13-10

TBR(max)
TBCLO
TBCLA
TBCL3 /
Oh
» |4 | P |[& DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQUA1 EQUA1 EQU1 EQU1 Interrupt Events
TBIFG EQUO TBIFG EQUO p
EQU3 EQU3 EQU3 EQU3
Timer_B

Timer_B Operation

13.2.4 Capture/Compare Blocks

Capture Mode

Three or seven identical capture/compare blocks, TBCCRYX, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

[d The timer value is copied into the TBCCRXx register
[d The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 13-10.

Figure 13-10. Capture Signal (SCS=1)

Timer X n-2 X n-1 X n X n+1 X n+2 X n+3 X n+4 X

CcCl
Capture

Set TBCCRx CCIFG

[1]

"\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 13-11. COV must
be reset with software.

Timer_B 13-11

Timer_B Operation

Figure 13—11.Capture Cycle

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture
Taken

Capture Read and No Capture

Capture
Clear Bit COV

in Register TBCCTLx
Second
Capture
Taken
COV =1

Idle

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets bit CCIS1=1 and toggles bit CCISO0 to switch
the capture signal between Ve and GND, initiating a capture each time
CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM 3, &TBCCTLx ; Setup TBCCTLx
XOR #CCISO0, &TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

 Interrupt flag CCIFG is set
1 Internal signal EQUx =1

O EQUx affects the output according to the output mode

13-12 Timer_B

Timer_B Operation

Compare Latch TBCLx

The TBCCRx compare latch, TBCLX, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRXx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRXx to TBCLx is user-selectable with the CLLDx bits as described
in Table 13-2.

Table 13-2. TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRX is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCLO value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR
counts to the old TBCLXx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRXx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 13-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRx are set to zero, all compare latches
update immediately when their corresponding TBCCRXx is written; no compare
latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped.
First, all TBCCRXx registers of the group must be updated, even when new
TBCCRXx data = old TBCCRx data. Second, the load event must occur.

Table 13-3.Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2 TBCCR1
TBCL3+TBCL4 TBCCRS3

TBCL5+TBCL6 TBCCR5

10 TBCL1+TBCL2+TBCL3 TBCCR1
TBCL4+TBCL5+TBCL6 TBCCR4

11 TBCLO+TBCL1+TBCL2+ TBCCR1

TBCL3+TBCL4+TBCL5+TBCL6

Timer_B 13-13

Timer_B Operation

13.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.
The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance
state.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 13-4. The OUTXx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQUO.

Table 13-4. Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTXx is updated.

001 Set The output is set when the timer counts
to the TBCLx value. It remains set until a
reset of the timer, or until another output
mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer
counts to the TBCLx value. It is reset
when the timer counts to the TBCLO
value.

o011 Set/Reset The output is set when the timer counts
to the TBCLx value. It is reset when the
timer counts to the TBCLO value.

100 Toggle The output is toggled when the timer
counts to the TBCLx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TBCLx value. It remains reset until
another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TBCLx value. It is set when
the timer counts to the TBCLO value.

111 Reset/Set The output is reset when the timer counts
to the TBCLx value. It is set when the
timer counts to the TBCLO value.

13-14 Timer_B

Output Example—Timer in Up Mode

Timer_B Operation

The OUTXx signal is changed when the timer counts up to the TBCLx value, and
rolls from TBCLO to zero, depending on the output mode. An example is shown

in Figure 13-12 using TBCLO and TBCLA1.

Figure 13—-12. Output Example—Timer in Up Mode

TBR(max)
TBCLO

TBCL1

Oh

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

EQUO
TBIFG

EQU1

EQUO
TBIFG

EQU1

‘ Output Mode 6: Toggle/Set

‘ Output Mode 7: Reset/Set

EQUO
TBIFG

Interrupt Events

Timer_B 13-15

Timer_B Operation

Output Example—Timer in Continuous Mode

The OUTXx signal is changed when the timer reaches the TBCLx and TBCLO
values, depending on the output mode, An example is shown in Figure 13-13
using TBCLO and TBCLA1.

Figure 13-13. Output Example—Timer in Continuous Mode

TBR(max)
TBCLO
TBCLA1
Oh
Qutput Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TBIFG EQU1 EQUO TBIFG EQU1 EQUO Interrupt Events

13-16 Timer_B

Timer_B Operation

Output Example — Timer in Up/Down Mode

The OUTXx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCLO, depending on the output mode.
An example is shown in Figure 13-14 using TBCLO and TBCLS3.

Figure 13—-14. Output Example—Timer in Up/Down Mode

TBR(max)
TBCLO
TBCL3
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
EQU3 | EQU3 EQU3 EQU3
TBIFG EQUO TBIFG EQUO Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7, &TBCCTLx ; Set output mode=7
BIC #OUTMODx , &TBCCTLx ; Clear unwanted bits

Timer_B 13-17

Timer_B Operation

13.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:
[TBCCRO interrupt vector for TBCCRO CCIFG
(1 TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRXx register. In compare mode, any CCIFG flag is set when
TBR counts to the associated TBCLx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCRO Interrupt Vector

The TBCCRO CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 13-15. The TBCCRO CCIFG
flag is automatically reset when the TBCCRO interrupt request is serviced.

Figure 13-15. Capture/Compare TBCCRO Interrupt Flag

Capture

EQUO

CAP

:)_ b Set Q CCIE.’:)-» IRQ, Interrupt Service Requested

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

TBIV, Interrupt Vector Generator

13-18

Timer_B

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCRO CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCRO CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag will generate another interrupt.

Timer_B Operation

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task
handling itself. The latencies are:

(g Capture/compare block CCRO 11 cycles

(g Capture/compare blocks CCR1 to CCR6 16 cycles

g Timer overflow TBIFG 14 cycles

The following software example shows the recommended use of TBIV for
Timer_B3.

; Interrupt handler for TBCCRO CCIFG. Cycles

CCIFG_0_HND
; Start of handler Interrupt latency 6
RETI

; Interrupt handler for TBIFG, TBCCR1l and TBCCR2 CCIFG.

TB_HND ce ; Interrupt latency 6
ADD &TBIV, PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1 HND ; Vector 2: Module 1 2
JMP CCIFG 2 HND ; Vector 4: Module 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ; Vector 12
TBIFG HND ; Vector 14: TIMOV Flag
; Task starts here
RETI 5
CCIFG_2 HND ; Vector 4: Module 2
; Task starts here
RETI ; Back to main program 5
; The Module 1 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCIFG_1_HND ; Vector 6: Module 3
c. ; Task starts here
JMP TB_HND ; Look for pending ints 2

Timer_B 13-19

Timer_B Registers

13.3 Timer_B Registers

The Timer_B registers are listed in Table 13-5:

Table 13-5. Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR
Timer_B counter TBR Read/write 0190h Reset with POR
Timer_B capture/compare control 0 TBCCTLO Read/write 0182h Reset with POR
Timer_B capture/compare 0 TBCCRO Read/write 0192h Reset with POR
Timer_B capture/compare control 1 TBCCTLA Read/write 0184h Reset with POR
Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR
Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR
Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR
Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR
Timer_B capture/compare 3 TBCCRS3 Read/write 0198h Reset with POR
Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR
Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR
Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR
Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR
Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR
Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR
Timer_B interrupt vector TBIV Read only 011Eh Reset with POR

13-20 Timer_B

Timer_B Registers

Timer_B Control Register TBCTL

15 14 13 12 1 10 9 8
Unused TBCLGRPx CNTLx Unused TBSSELx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TBCLR TBIE TBIFG
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rw—(0)
Unused Bit 15 Unused
TBCLGRP Bit TBCLx group

14-13 00 Each TBCLx latch loads independently

01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)
TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCRS5 CLLDx bits control the update)
TBCLO independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCLO independent

11 TBCLO+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)

CNTLXx Bits Counter Length
12-11 00 16-bit, TBR(max) = OFFFFh
01 12-bit, TBR(max) = OFFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = OFFh

Unused Bit10 Unused
TBSSELX Bits Timer_B clock source select.
9-8 00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 N
01 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_B is not in use conserves
5-4 power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TBCLO

10 Continuous mode: the timer counts up to the value set by CNTLx
11 Up/down mode: the timer counts up to TBCLO and down to 0000h

Timer_B 13-21

Timer_B Registers

Unused Bit 3
TBCLR Bit 2
TBIE Bit 1
TBIFG Bit 0

Unused

Timer_B clear. Setting this bit resets TBR, the clock divider, and the count
direction. The TBCLR bit is automatically reset and is always read as zero.

Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 1 10 9 8
TBRx ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TBRx ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
TBRXx Bits Timer_B register. The TBR register is the count of Timer_B.
15-0

13-22 Timer_B

TBCCRXx, Timer_B Capture/Compare Register x

Timer_B Registers

15 14 13 12 1 10 9 8
TBCCRx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TBCCRx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
TBCCRXx Bits Timer_B capture/compare register.

15-0 Compare mode: Compare data is written to each TBCCRx and automatically
transferred to TBCLx. TBCLx holds the data for the comparison to the timer

value in the Timer_B Register, TBR.

Capture mode: The Timer_B Register, TBR, is copied into the TBCCRXx

register when a capture is performed.

Timer_B 13-23

Timer_B Registers

TBCCTLXx, Capture/Compare Control Register

15 14 13 12 11 10 9 8
CMx CCISx SCSs CLLDx CAP
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r—(0) rw—(0)
7 6 5 4 3 2 1 0
OUTMODx CCIE ccl ouT cov CCIFG
rw—(0) rw—(0) rw—(0) rw—(0) r rw—(0) rw—(0) rw—(0)
CMx Bit Capture mode
15-14 00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges
CCISx Bit Capture/compare input select. These bits select the TBCCRXx input signal.
13-12 See the device-specific data sheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 Ve
SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture
CLLDx Bit Compare latch load. These bits select the compare latch load event.
10-9 00 TBCLx loads on write to TBCCRXx
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to 0 (up or continuous mode)
TBCLx loads when TBR counts to TBCLO or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx
CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode
OUTMODx Bits Output mode. Modes 2, 3, 6, and 7 are not useful for TBCLO because EQUx
7-5 = EQUO.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set
13-24 Timer_B

CCIE

CCl
ouT

cov

CCIFG

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Timer_B Registers

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

Timer_B 13-25

Timer_B Registers

TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 1]

r0 r0 r0 r0 r0 ro r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIVx 0

r0 r0 r0 r0 r—(0) r—-(0) r—(0) r0

TBIVx Bits Timer_B interrupt vector value
15-0
Interrupt
TBIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h Capture/compare 1 TBCCR1 CCIFG Highest
04h Capture/compare 2 TBCCR2 CCIFG
06h Capture/compare 3t TBCCR3 CCIFG
08h Capture/compare 4t TBCCR4 CCIFG
0Ah Capture/compare 57 TBCCR5 CCIFG
0Ch Capture/compare 61 TBCCR6 CCIFG
OEh Timer overflow TBIFG Lowest
t Not available on all devices
13-26 Timer_B

Chapter 14

Universal Serial Interface

The Universal Serial Interface (USI) module provides SPI and I2C serial
communication with one hardware module. This chapter discusses both
modes. The USI module is implemented in the MSP430x20xx devices.

Topic

Page
14.1 USliIntroductionciiiiiiiiiiiii it innnnananns 14-2
142 USIOperationciiiiiiiiiiii it ianrcanrcnnnnneens 14-5
14.3 USIRegisterscviiiiiiiiiiiiiiiiiiiiiiaa e ennnnnns 14-13

14-1

USI Introduction

14.1 USI Introduction

The USI module provides the basic functionality to support synchronous serial
communication. In its simplest form, it is an 8- or 16-bit shift register that can
be used to output data streams, or when combined with minimal software, can
implement serial communication. In addition, the USI includes built-in
hardware functionality to ease the implementation of SPI and [2C
communication. The USI module also includes interrupts to further reduce the
necessary software overhead for serial communication and to maintain the
ultralow-power capabilities of the MSP430.

The USI module features include:

Three-wire SPI mode support

I2C mode support

Variable data length

Slave operation in LPM4 — no internal clock required

Selectable MSB or LSB data order

START and STOP detection for 12C mode with automatic SCL control
Arbitration lost detection in master mode

Programmable clock generation

U U0 uJ U U dod oo

Selectable clock polarity and phase control

Figure 14—1 shows the USI module in SPI mode. Figure 14-2 shows the USI
module in 12C mode.

14-2 Universal Serial Interface

USI Introduction

Figure 14-1. USI Block Diagram: SPI Mode

USIGE USIOE
usli2C =0 USIPE6
D Q SDO
Dl
USI16B USILSB
" " USIPE7
8/16 Bit Shift Register < | SDI
o— >
EN USISR
USICNTx USIIFGCC
Bit Counter
—P» Set USIIFG
USISWRST B—— EN
USICKPH
USICKPL
USIPE5
Shift Clock 1
® SCLK
0
USISSELx
SCLK — 000
USIDIVx USIMST
ACLK —] 001
SMCLK —{ 010
Clock Divider
SMCLK — 011 [112/4/8... 1128
USISWCLK=—{ 100
HOLD
TAO — 101
TA1 —] 110
TA2 — 111
—
USIIFG

Universal Serial Interface 14-3

USI Introduction

Figure 14-2. USI Block Diagram: I12C Mode

USIOE
usII2C = 1
USICKPL =1 Set USIAL,
USICKPH =0) D Q= Cioar usioE
USILSB = 0 f)DJ
USI16B =0 ﬁ
USIGE
|]
D ol e
—p
USIPE7
MSB LSB
8-Bit Shift Register ® SDA
o B
EN USISRL
USICNTx USIIFGCC A
Bit Counter ®—| START
L P Set USIIFG L P Set USISTTIFG
USISWRSTm—— EN Detect
—| sTOP
L p»Set USISTP
USICKPH * Detect
USICKPL
USIPE6
Shift Clock 1
SCL
L
USISTTIFG
USIIFG SCL Hold DJ:
USISCLREL N
USISSELx
SCLK 000
USIDIVx
ACLK 001
SMCLK 010 . Thowo
SMCLK 011 Clock Divider USICLK
TA0O —] 101
TA1 —] 110
TA2 —] 111
L—

14-4 Universal Serial Interface

USI Operation

14.2 USI Operation

The USI module is a shift register and bit counter that includes logic to support
SPI and 12C communication. The USI shift register, USISR, is directly
accessible by software and contains the data to be transmitted or the data that
has been received.

The bit counter counts the number of sampled bits and sets the USI interrupt
flag USIIFG when the USICNTXx value becomes zero - either by decrementing
or by directly writing zero to the USICNTX bits. Writing USICNTXx with a value
> 0 automatically clears USIIFG when USIIFGCC = 0, otherwise USIIFG is not
affected. The USICNTX bits stop decrementing when they become 0. They will
not underflow to OFFh.

Both the counter and the shift register are driven by the same shift clock. On
a rising shift clock edge, USICNTx decrements and USISR samples the next
bit input. The latch connected to the shift register’s output delays the change
of the output to the falling edge of shift clock. It can be made transparent by
setting the USIGE bit. This setting will immediately output the MSB or LSB of
USISR to the SDO pin, depending on the USILSB bit.

14.2.1 USI Initialization

While the USI software reset bit, USISWRST, is set, the flags USIIFG,
USISTTIFG, USISTP, and USIAL will be held in their reset state. USISR and
USICNTXx are not clocked and their contents are not affected. In I2C mode, the
SCL line is also released to the idle state by the USI hardware.

To activate USI port functionality the corresponding USIPEX bits in the USI
control register must be set. This will select the USI function for the pin and
maintains the PxIN and PxIFG functions for the pin as well. With this feature,
the port input levels can be read via the PxIN register by software and the
incoming data stream can generate port interrupts on data transitions. This is
useful, for example, to generate a port interrupt on a START edge.

Universal Serial Interface 14-5

USI Operation

14.2.2 USI Clock Generation

14.2.3 SPI Mode

The USI clock generator contains a clock selection multiplexer, a divider, and
the ability to select the clock polarity as shown in the block diagrams
Figure 15-1 and Figure 14-2.

The clock source can be selected from the internal clocks ACLK or SMCLK,
from an external clock SCLK, as well as from the capture/compare outputs of
Timer_A. In addition, it is possible to clock the module by software using the
USISWCLK bit when USISSELx = 100.

The USIDIVx bits can be used to divide the selected clock by a power of 2 up
to 128. The generated clock, USICLK, is stopped when USIIFG = 1 or when
the module operates in slave mode.

The USICKPL bit is used to select the polarity of USICLK. When USICKPL = 0,
the inactive level of USICLK is low. When USICKPL = 1 the inactive level of
USICLK is high.

The USI module is configured in SPI mode when USII2C = 0. Control bit
USICKPL selects the inactive level of the SPI clock while USICKPH selects the
clock edge on which SDO is updated and SDI is sampled. Figure 14-3 shows
the clock/data relationship for an 8-bit, MSB-first transfer. USIPES, USIPES,
and USIPE7 must be set to enable the SCLK, SDO, and SDI port functions.

Figure 14-3. SPI Timing

CkpH oKkpL USICNTX 0
o 0 SCLK
0o 1 SCLK
10 SCLK
11 SCLK
0 X SDO/SDI

14-6

X SDO/SDI :)

Load USICNTx

300

JCC s

=<
<
2]
o

-
w
vs)

MoCC
siBISEE
MoCC
MaCC
MaC Y

=<
)
ve)
> S
> S
ve)

USIIFG

Universal Serial Interface

SPI Master Mode

SPI Slave Mode

USI Operation

The USI module is configured as SPI master by setting the master bit USIMST
and clearing the 12C bit USII2C. Since the master provides the clock to the
slave(s) an appropriate clock source needs to be selected and SCLK
configured as output. When USIPES5 = 1, SCLK is automatically configured as
an output.

When USIIFG = 0 and USICNTx > 0, clock generation is enabled and the
master will begin clocking in/out data using USISR.

Received data must be read from the shift register before new data is written
into it for transmission. In a typical application, the USI software will read
received data from USISR, write new data to be transmitted to USISR, and
enable the module for the next transfer by writing the number of bits to be
transferred to USICNTXx.

The USI module is configured as SPI slave by clearing the USIMST and the
USII2C bits. In this mode, when USIPE5 = 1 SCLK is automatically configured
as an input and the USI receives the clock externally from the master.

If the USI is to transmit data, the shift register must be loaded with the data
before the master provides the first clock edge. The output must be enabled
by setting USIOE. When USICKPH = 1, the MSB will be visible on SDO
immediately after loading the shift register.

The SDO pin can be disabled by clearing the USIOE bit. This is useful if the
slave is not addressed in an environment with multiple slaves on the bus.

Once all bits are