

November 2008

Introducing LED Backlight Solutions from Freescale

AC106

K.M Fung System Solution Engineering Manager

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Contents

- Display introduction
- Target applications
- LCD display block diagram
- LED backlighting
- LED advantages
- Technical challenges
- Notebook/ Medium panel LED solution
- Large screen challenges
- Large screen LED solution
- ► Future products
- ► Freescale Demos
- Summary

Freescale Display Focus

- ► The display market is huge
 - Almost 3.7B displays will be manufactured in 2008
- LCD (Liquid Crystal Display) is the dominant technology in the display market
 - Accounts for 3.2B units or 86%
- There are two main types of LCD:
 - Passive matrix LCD
 - Accounts for 1.2B units
 - Primarily gray scale, character/fixed or low resolution displays
 - Serves low end of market
 - Active Matrix TFT-LCD (Thin Film Transistor LCD)
 - Accounts for 1.9B units
 - Primarily full color, pixel based displays
 - Serves high value markets
- Freescale will focus initially on medium/large TFT-LCD displays
 - 506M unit SAM in 2008
 - Requires higher voltage/ higher power electronics
 - SMARTMOS technology provides a differentiator
 - Integration of high voltage, high power, analog and high density logic
- Small TFT-LCD display support
 - Integration in large scale power management ICs

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

LED Backlighting Introduction

LED Backlights dominate the smaller LCD display market

- · Cell phone, GPS, PDA
- Larger display have traditionally used Cold Cathode Fluorescent Lamps (CCFLs)
- LEDs now penetrating larger LCD modules
 - Notebooks have largest adoption today exceed 30% in 2009
 - Monitor and TVs are emerging market

CCFL

IFD

LED Backlight Classification

- The LEDs used in backlighting are characterized in a number of ways
- 1. Current capability
 - Standard LED drive current < 50mA
 - High current LED drive current 50 150 mA
 - High power LED drive current 150 1000mA+

- 2. Color
 - White LEDs
 - Red, Green and Blue LEDs
 - Combined to make white
- LED forward voltage depends on color
 - Red ~ 2V, Green ~ 3.5V, Blue/White ~3.5 4V

Philips Luxeon K2 High Power LED

The LED Advantage

LEDs have many advantages compared to CCFL

- Point source characteristics enable more flexible backlight architectures
 - Enables thinner backlight designs
 - Enables advanced backlight architectures
- Higher efficacy (more light at a give power) White LEDs only today
- Longer lifetime (50,000 hrs vs. <10,000 hrs.)
- Dimmable accurate with infinite steps
- Low voltage drivers reduces complexity
- Environmentally friendly (CCFLs contain mercury)
- Rugged CCFLs are glass and can break easily
- RGB specific advantages
 - Wider color gamut
 - Tunable white point

LED Driver Challenges – Current Driver

- To maintain backlight uniformity, all LEDs must be the same brightness
 - For LED, light output is dependent on current, not voltage
 - Therefore current needs to be matched between LEDs
 - The target of module makers is ±1% matching
 - Complicated by the fact that LED forward voltages (VF) vary by ±10-15%

• Assume the LEDs have a V_F range of 3.0V to 3.6V (Mean = 3.3V) and we want 20mA

 $R = (5 - 3.3)/20mA = 85\Omega$ $I_{LED1} = (5 - 3.0)/85 = 24mA$ $I_{LED2} = (5 - 3.6)/85 = 16mA$ > Low cost > Poor matching ±20%

> Not suitable for backlight

Ideal current source = perfect matching Real world implementation

Active circuit maintains voltage across current setting transistor - Vx

- V_F voltage difference drop across transistor
- LED current set by Vx/R
- Matching set by Vx accuracy FSL = $\pm 1\%$ to $\pm 2\%$
- > Best current matching
- > Suitable for backlight driver

LED Driver Challenges – LED Connection

- Each backlight consists of many LEDs 3 to 1000+ depending on display size
- LEDs can be connected in series or parallel

Series

25V

Perfect current matching High voltage drivers are more expensive Inefficient for high step up ratio

Parallel

Needs current matching circuits – less accurate Enables lower voltage drivers Needs many channels = expensive

For more than 8 LEDs, a series/ parallel combination is usually used

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Other LED Driver Concerns

VF variation between LEDs increases power dissipation/ heating

- Typical white LED spec'd with $V_F = 3.0V$ min, 3.6V max.
 - Binning can be used to sort LEDs and reduce this variation
- For a string of 12 LEDs, this means $V_{F(total)} = 36V$ to 43.2V
- In reality, statistical distribution may give 2V 3V variation
- The linear drivers have to absorb this voltage difference (V_{VAR})
- In addition, there is a minimum voltage in the drivers needed for the current driver (V_{MIN})
 - Reducing this to a minimum, helps keep power dissipation down
 - However there is a trade off with current accuracy
 - Freescale's first products are at 500mV
- $P_{\text{Diss}} = ((n 1) \times I_{\text{LED}} \times (V_{\text{MIN}} + V_{\text{VAR}})) + \text{ILED} \times V_{\text{MIN}}$
- e.g. For 8 channels, driving 50mA LEDs with average variation of 3V
- $P_{\text{Diss}} = ((7 1) \times 50.10^{-3} \times (0.5 + 3)) + 50.10^{-3} \times 0.5 = 1.08W$

LED wavelength is dependent on current

- Therefore PWM dimming is used to change brightness, maintaining a constant current
- At low brightness's, analog dimming can be used to improve dynamic range (contrast ratio)
 - Éye is less sensitive to color at low intensity
- For RGB LEDs, wavelength can be tuned with current control

The Freescale Advantage

► Experience

- · Recruited expert team with many years LED driver experience
- System group engaged with major LED backlight vendors for complete solution approach
 - Convert LCD panels to LED backlight
 - Understand all aspect of backlight design
 - Deep understanding of LED design challenges

► Technology

- Freescale SMARTMOS [™] technology
- Enables integration of high density control logic, with integrated power device and accurate analog control circuits

Our existing custom products are the highest performing LED drivers on the market

Notebook and Mid-size Display LED Drivers

- ► Typically use White, Standard LEDs (20 to 50mA)
- The number of standard white LEDs varies depending on the application
 - 10 100 LEDs will be used depending on screen size
 - 7" = 10-16 LEDs
 - 12" = ~40 LEDs
 - 14.1" = ~54 LEDs
 - 15.4" = ~60 LEDs
 - Typical applications have a single driver
- Drivers are powered from either
 - Internal 5V or 12V
 - Direct from battery
 - 7 to 20V in Notebooks

MC34844 LED Driver

Applications

- Notebook
- Industrial/medical/instrumentation
- Portable DVD
- Automotive
- Picture frame

Features

- Input voltage 7V to 30V
- 3.5A integrated boost
- Output voltage up to 60V
- 10-channel current driver
- ±2% current matching
- Programmable LED current
 - Up to 55mA per channel
- Dynamic Headroom Control
 - Improves device efficiency
- Multiple control options
 - I²C/ SM-Bus interface
 - PWM input
 - Analog control
- Programmable PWM generator
 - 100Hz to 20kHz frequency
 - 255 step PWM duty cycle
- PWM synchronizing capability Improved matching between devices
 - Remove Waterfall issues
 - User programmable OVP
- LED failure detection
- **OTP/OCP/UVLO** lockout
- 32-Ld 5x5x0.8mm TQFN package
- Samples: June 2008

MC34844 Advantages

- Accurate, programmable current drivers
 - Mirrors match to $< \pm 2\%$
 - At low PWM ratios, current control offers further dimming range
- PWM synchronize circuit
 - Matches PWM clocks in each device for matched PWM outputs
 - Frequency and duty ratios are then both matched
 - Improves brightness matching between devices
- 100Hz to 25kHz dimming range
 - Can be locked to multiple of frame frequency for improved brightness matching
 - Can be programmed above audio frequency for reduced noise in some systems
- 7V to 30V input range ideal for notebook applications
- Dynamic headroom control improves system efficiency/ reduces dissipation in driver
 - Measures voltage across all LED strings
 - Sets boost voltage to minimum capable of driving all channels, reducing voltage across drivers

Monitor and TV LED Drivers

- For monitors and TVs both white and RGB LEDs are used
- Can use all types of LED from Standard to High Power (50mA to 350mA)
- The number of LEDs depends on the size of panel, and the type of LED
 - Can use 2000 4000 standard LEDs
 - For high power LEDs, a few hundred units are used
 - Requires multiple drivers per system
- Power typically comes from a 24V supply

Monitor and TV LED Backlight Architectures

- Innovative LED backlight architectures are being used to overcome drawbacks of the LCD technology
- One such drawback is contrast ratio
- ► A second is power consumption
- Local dimming improves both
 - · Backlight is divided in to a number of zones
 - The backlight is then adjusted depending on the picture content
 - Contrast ratio improvements up to 500,000:1 possible
 - Standard LCD ~ 5000:1
 - Reduces power dissipation up to 60%
 - The backlight consumes 30%+ of power in LCD-TVs

Local Dimming

Local Dimming Backlight Example

Input Image

LED array

LCD with correction

Output image

Source : Brightside/ Dolby

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Monitor and TV LED Backlight Architectures

Another problem with LCD is motion blur

This can be improved using scanned backlights

- · Backlight is divided in to rows
- · Light is scanned down the display at frame rate
- One or more rows can be illuminated at a time
- Eye tricked in to seeing faster refresh
- · This removes the blur effect

Can be combined with local dimming

With Scan

Without Scan

TV/Monitor LED Driver Chipset

- Design to meet requirements of different backlight configurations
- Separate DC:DC and driver sections enable flexible design
 - # of Drivers depends on number of channels to be driven
 - Support for single DC:DC for whole panel, or local zone/multi-zone DC:DC
- Supports RGB or White LED backlighting
- Support various LED currents
 - 16-channel, 60mA device is first product
 - Future support up to 240mA LEDs
- Support for local dimming panels
- Support for scanning
- ► Target Sample Date: September 2008

TV/ Monitor LED Driver Chipset

Freescale Semiconductor Proprietary Information. Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Intelligent Driver IC

Features 12V and 2.5V IC inputs 16 channel intelligent drivers ±1% current accuracy 60V max. LED voltage VIN1 UVLO 60mA max IF current 25% VIN2 UVLO Current programmable 🕆 CK+ TME Temp Sensor LVDS Intelligent to 8 bits DATA+ interface Control DATA-Voltage 12-bit SMART PWM Sense AIN 100Hz to 25kHz PWM rate AUT/F Address generator 16-channel Clock synchronization circuit IREE 8-bit IGND Current DAC RSDS interface ISET Ž Program offset ratios 16 channel 16- channel Program brightness 60mA 12-bit Drivers 19 **PWM Generator** Program LED currents EN 110 . 111 Read back temperature M/~S Clock/ PLL 112 СК and status 113 OTP 114 Global program mode GND • Auto address generation PGND 60MHz interface 40-Ld 6x6 QFN package -40° C to +85° C operation

22

Advantages

- ▶ 12-bit, 100Hz to 25kHz PWM with synchronizing function
 - Provides larger dimming ratio improving contrast ratio
 - Frequency can be sync'd to 120Hz frame rate, or superset of frame frequency to remove waterfall
- 8-bit programmable current per channel
 - Improves dimming range for higher contrast ratio
 - Provides for RGB LED wavelength tuning
 - ±1% current matching at full scale
- Chip-to-Chip PWM sync function
 - 100% matching of frequency and duty cycle between devices
 - Provides better brightness matching between devices
 - Removes visual artifacts
- High speed control interface
 - Provides fast updates for local dimming mode
 - Special command sets for row scanning function and global setup
- Auto-address generator
 - Start-up routine automatically sets device address
 - Removes need for dedicated pins to set device address
 - A single board design can be used across the backplane
 - No operator interaction to set device addresses

Power IC

Features

- ▶ 12V and 2.5V chip supplies
- Boost or Buck configurations
- 3 x DC:DC controllers
 - Supports any FET
 - 750mA gate drive
 - Soft start
 - Over voltage protection
- Programmable frequency
 - 200kHz to 1.2MHz
- Frequency synchronization mode
- Programmable slew rate
- Programmable soft start
- Input side safety switch
- OTP/OVP/OCP/UVLO lockout
- 28-Ld 5x5 QFN package

Advantages

- Each channel can be configured for boost or buck mode
 - Depending on input voltage and # of LEDs, output can be lower or higher than input
 - e.g 8 RGB LEDs on 24V input, R = 16V out, GB = 28V out
- DHC (Dynamic Headroom Control) function especially designed to work with Serpent II IC
 - Proprietary digital interface between Anaconda II and Serpent II
 - Provides noise immunity and high speed DHC update
- External FET architecture enable current to be scaled to requirement
- Programmable switching frequency enables efficiency to be optimized depending on application
- Switching frequency sync function reduces cross talk and noise

LED Backlight Controllers

► For RGB color control, simple 8-bit MCU is sufficient

- Freescale solution based on 68HC9S08AW60
- Patented color control system architecture
- Demo available in exhibit hall and at Meet the Expert sessions

Freescale Color Management Control System

Auto calibration is possible in the manufacturing stage !

Features :

- FSL 8bit MCU is used as the color management controller
- >100% NTSC color gamut
- System input or user defined color space coordinate as the reference
- Close loop with color analyzer for BLU color temperature alignment
- Color sensor close loop to maintain the desired color temperature with error less than 0.005 count of CIE standard
- LED and analog driver characteristic profiles are considered

 $(f_{R/G/B}) = F(X_{R/G/B}, Y_{R/G/B}) \bullet F(X_W, Y_W)$ $(\mathbf{f}_{\mathsf{R}/\mathsf{G}/\mathsf{B}})$ is the fraction of R, G, B for color mixing $(X_{\text{R/G/B}},\,Y_{\text{R/G/B}})$ are the R/G/B LED color space as selected from particular LED binning (X_w, Y_w) is the desired white point color space

Future LED Driver Products

Next generation products target

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Small Panel Solutions

White LEDs dominate small panel backlighting

- Cell phones, DSC, smart phone, PDA, MID, GPS...
- Historically have used separate LED driver
- Majority applications now moving to integrated solutions
- Freescale supports this market through integrated solutions only

PMIC for portable products Integrates LED driver

Product Demonstration

- Exhibit Hall:
 - LCD monitor with RGB LED backlight using Freescale control MCU and LED driver chipset
- ► Meet the expert session:
 - (Tuesday 2PM and Wednesday 1:45PM)
 - Local Dimming backlight using Freescale LED driver chipset and FPGA controller
 - Monitor backlight using Freescale white LED backlight driver

Summary

- Freescale highly focused on LED backlight market
- Leverage system expertise and Freescale advanced technology to provide differentiated, enabling products
- Custom products moving in to production today
- First standard products now sampling
- Advanced LCD-TV system will sample in Q4'08
- Future road map to cover all types of LED backlight requirements

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

32

Related Session Resources

Session Location – Online Literature Library

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=052577903644CB

Sessions

Session ID	Title

Demos

Pedestal ID	Demo Title		

