

Nov. 6, 2008

Quality/Zero Defect: Freescale Strategies, Measures and Tools

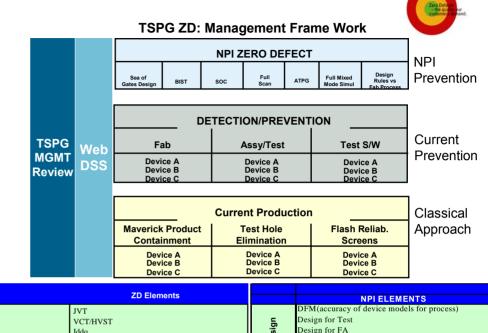
PA101

Peter Kang China Automotive FAE Manager

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Freescale Quality Vision

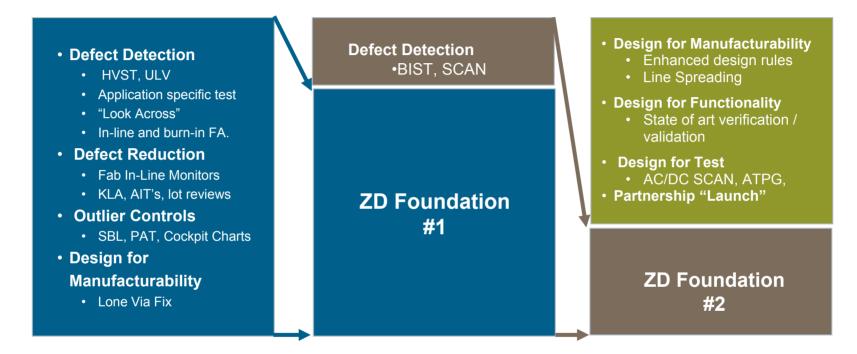
Vision	It's impossible. Zero = Zero
Mission	 Zero Defects for the Automotive Market Safe Launch on New Product Introductions
Strategy	Defects Containment Analysis Improvement Spill Elimination Safe Launch New Technology Introduction New Product Development Technology and Product Transfers


Looking Back on the Journey

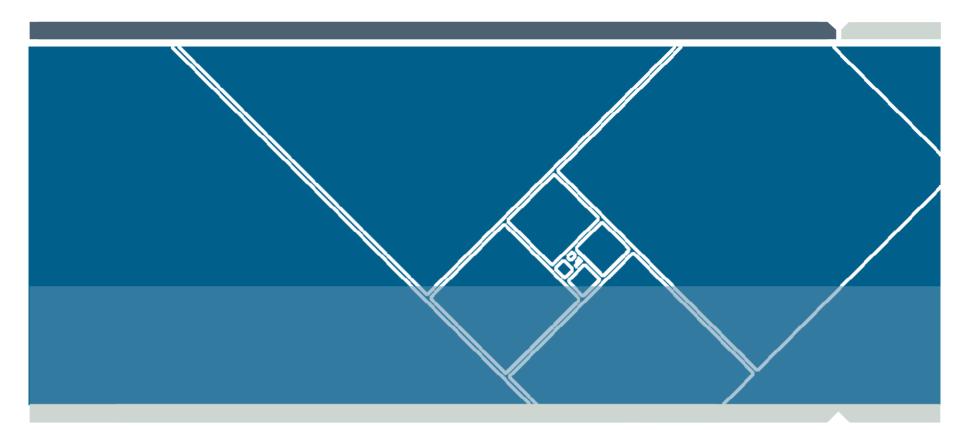
Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

- In 2004/ 2005 we started the journey for Zero defects
- ► We set a management framework :
 - Classical: i.e, Containment and screens
 - Detection and Prevention
 - Focus on Zero Defect techniques for New Products
- We defined a set of ZD elements in the Manufacturing, Product and Test and Design
- These were constantly upgraded and carried forward as 'ZD base' for each new technology and product.
- In manufacturing we raised the bar successively

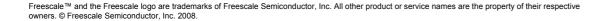
	ZD Elements		
Product Zero Defect Program	JVT VCT/HVST Iddq Test Coverage (AEC Spec) Lessons learned Look Across Standardized NVM test methods Burn-In	ion Design	NPI ELEMENTS DFM(accuracy of device models for process) Design for Test Design for FA Full Chip STA vs Module Flash & SRAM ECC Independent Verification Team Verification at module, platform, system level
Manufacturing Zero Defect Program	WebDSS COI Entry PAT (Unit Probe) BMY SBL Phase1 SBL Phase 2	t	Random Pattern generation at Module level 100% RTL block & expression coverage Spec Tagging SRAM & Flash BIST Trace Matrix
Division Specific Elements	PAT (Final Test) Gate Stress 100% Cold Test 100% Hot Test Inductive Load	Product Test	Full Chip AC & DC Scan >98% Stuck Fault coverage Code execution memory tests Reliability Lookahead(ESD/ NVM/ HTOL/TV) Burn-in Scan* & BIST
Factory Driven	Continuos Improvement- Particle Continuos Improvement- Defect Density SPC- Process, Particles SPC- Class Probe SPC- Unit Probe ISTAB- Process, Particles ISTAB- Class Probe Problem Solving- SD/ 5 Why's Problem Solving- FMEA Problem Solving- CAB Maverick Prevention- Lot Maverick Prevention- Lot Maverick Prevention- Wafer BMY Maverick Anamolous- Process, Particles	Pro	Matrix CZ prior to launch & or 2nd tape out Failure Analysis Capability Smoke alarm / Volt storm Top level simulation - mixed signal Peer reviews Analog HVST (SOA, inductive load, gate stress, bvd:

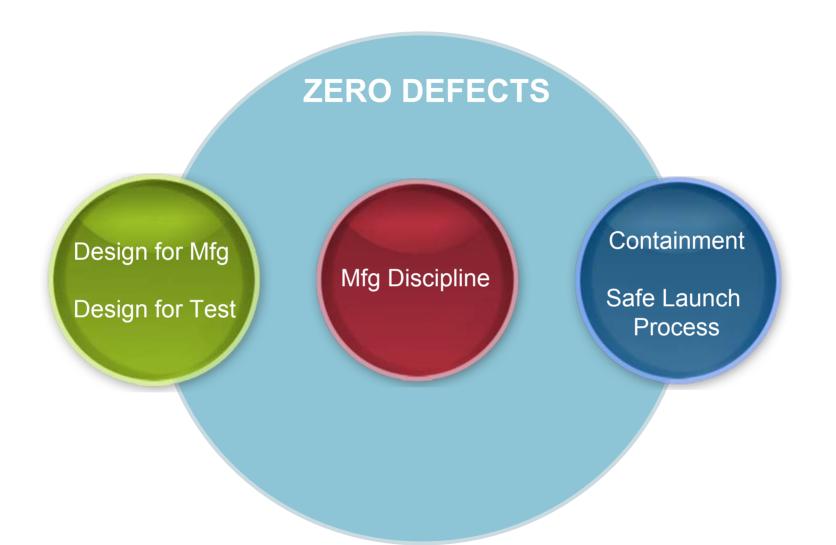

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

4


Freescale TSPG ZD Approach

Institutionalize ZD elements as the foundation and add new learnings'


- Introduce 'Safe launch' process with the customer
- Continue to raise the ZD requirements every year for manufacturing



What is the ZD Methodology in Freescale?

Freescale Zero Defects Methodology

DFM in Freescale

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

Design for Manufacturability Strategy

Freescale has invested substantially to advance DFM

A dedicated group is assigned to develop and aggressively deploy advanced techniques to impact our products

Target quality throughout the design lifecycle

- Standard cells are scored and corrected. Newer cells must ensure that area / quality is maximized
- SoC: Physical design flow is continuously updated to incorporate latest techniques nearly as transparently as possible

Continuously improve DTMS process

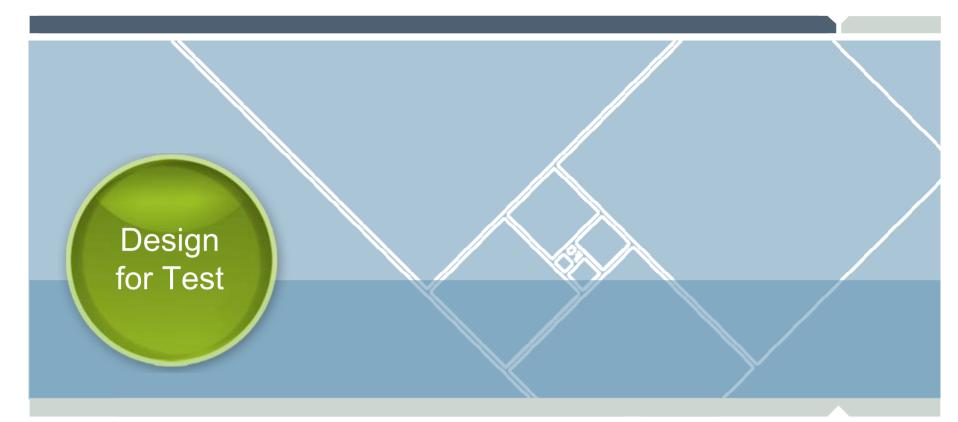
- DRC, DFM compliance are checked prior to tape-out
- Due diligence checks are added to ensure corrective actions have been successful

Drive the "Designed for Reality' initiative

• Close the gap between predicted and true product results

Occurrence of devices that Inability to print desired shapes due to physical fail to meet power and timing limitations of the litho process requirements Chemical & mechanical impacts of the mfg process on wafer/die planarity Model based parasitic extraction Statistical static timing analysis and optimization More intelligent margining Variation robust design **Original Design** Double-Cut Vias Inserted Design Chip Surface for Mfg

- Random particle induced opens & shorts
- Resistive vias & via opens • due to copper cladding and litho process



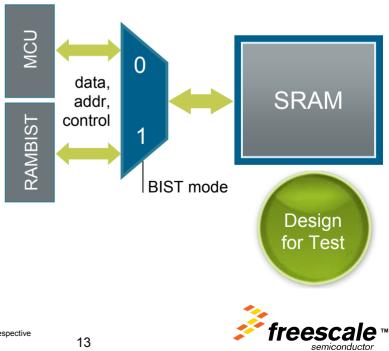
DFM Techniques

SoC DFM Methodology by Technology

Defect Class	DFM Technique		0.35um SMOS8, CDR3	0.18/0.25um 25SGF, LL18, HiP6WRF	0.13um HiP7, SMOS10	90nm LP/GP, NVM, RF, SOI	65nm LP/GP	45nm LP/GP, SOI
T		Via	Recommend	Required	Required	Required	Required	Required
Random	Optimization	Wire			Required	Required	Required	Required
д		Synthesis for yield				Recommend	Recommend	Recommend
Syste	Timing Aware Tiling (Metal Fill)					Recommend	Recommend	Recommend
Systematic	Model I Lithography						Required	Required
Para	Variation	SSTA						Pilot
Parametric	Tolerant Design	Model based extraction						Pilot

Design-for-Test

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.


Test Methodologies

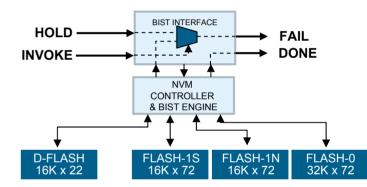
Digital Logic

- Scan is dominant test method with SA fault coverage goal of >99%
 - Scan test through I/O pads increases die area covered and through RAM increases coverage in RAM surrounding logic
 - Inter clock domain scan increases transition fault coverage
 - On-chip decompression / compression logic enables high parallel test and test pattern increase required for advanced fault models.
- Functional test patterns on top of scan
 - Test basic functionality on module basis
 - Covers what scan missed
- · Defect based tests IDDq, HVST
 - Pseudo stuck at fault coverage

SRAM and ROMs

- Memory BIST implemented for all SRAM and SDPRAM hard macros.
- Test Algorithms cover applicable Fault Models in SRAMs and SDPRAMs:

Test Methodologies

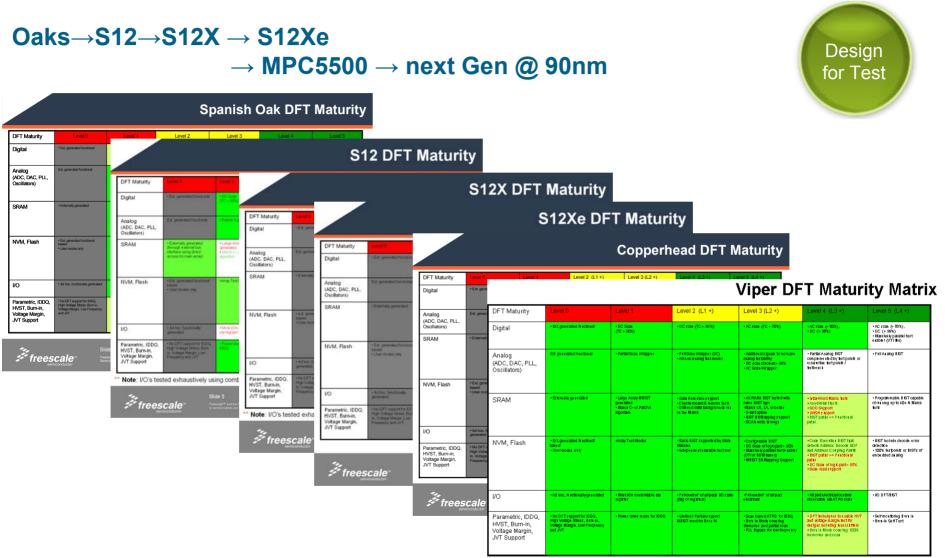

NVMBIST for Non-Volatile Memories

- Flexible, embedded test of NVM controlled via a dedicated test interface
 - Next generation NVM BIST engine combines hard coded algorithm elements on chip in combination with pattern selectable features
 - BIST serial scan chain loaded / unloaded via the 4 pin interface
- Benefits
 - Highly parallel NVM test at Sort-1 (x16 already).
 - Test all P-Flash and D-Flash blocks on a die in parallel.
 - Provides means for easy test standardization/control

Analog

- Approach
- Test specification derived from electrical specification, test guide, and module characterization results
- Functional patterns/functional tests development according to test development process
- Test Quality
- Fault coverage achieved through functional coverage of tests

Example NVM BIST LL18


DFT Maturity Matrix–Clear standard for Design-for-Test

Design for Test

DFT Maturity	Level 0	Level 1	Level 2	Level 3	Level 4	Level 5
Digital	 Ext. generated functional 	• SAF > 90%	• SAF > 95%	 SAF > 98% Transition >85% Path Delay >= 200 out of 1000 most critical 	• Transition > 90% • SAF > 99%	 SAF > 99.5% Transition > 95% Bridge > 70% 70% SI CFs Massively parallel test enabler (UTI like)
Analog (ADC, DAC, PLL, Oscillators)	Ext. generated functional	Partial Scan Wrapper	 Full Scan Wrapper (DC) Ad-hoc analog test modes (based on designer intuition) 	 Additional signals to increase analog testability DC scan stuck-at > 95% 	 Appropriate level of critical test points and test modes with Appropriate level of Analog BIST AC Scan Wrapper 	 Quantifiable boundary coverage > 99% 100% SAF & 95%Transition testing of logic Structural test of analog Full Analog BIST
SRAM	Externally generated	Large Array MBIST generated March C- or PMOVI algorithm	 Data Retention support Checkerboard & Inverse tests Different data backgrounds run on the March 	 All RAMs BIST tested with same BIST type BIST March LR/LA better BIST X/Y fast addressing BIST Bit Mapping SCAN write through 	 Sep BIST for DP RAMS BIST Intra-Word Coverage BIST Any-bit-fast tests Cell Stability Test Cell Stress Test BIST paths >= Func paths. 	 Programmable BIST capable of running up to 40+ N March tests In the Field BISR
ROM	Externally generated	MBIST tested 100% SAF	 100% AF (inc and dec addressing) 	 BIST X/Y fast addressing MBIST Bit Mapping Support Scan read support BIST MISR Aliasing probability < 1PPM (>= 20-bit MISR) 	 BIST Any-bit-fast tests BIST paths >= Functional paths. BIST MISR Aliasing probability < 0.1PPM (>=24-bit MISR) 	
NVM, Flash	 Ext. generated functional based User modes only 	• Array Test Modes	 Basic BIST supported by State Machine Independent erasable test row 	 Configurable BIST DC Scan logic > 98% Massively parallel test enabler (UTI or BDM based) MBIST Bit Mapping Support 	 Code Execution BIST that detects Address Decode SOF and Address Coupling Faults BIST paths >= Functional paths DC Scan logic part > 99% 	 BIST include decode error detection 100% testpoints or BISTs of embedded analog Scan read support
I/O	 Ad hoc, functionally generated 	 Most I/Os controllable via register 	 Full control* of all pads I/O state (jtag or registers) 	 Full control* of all pad electricals High speed IO 2^^7-1 random sequence for BER (PRBS loopback to PRSA): 	 All pad electrical controls observable via ATPG scan 	• I/O DFT/BIST
Parametric, IDDQ, HVST, Burn-in, Voltage Margin, JVT Support	No DFT support for IDDQ, High Voltage Stress, Burn in, Voltage Margin, Low Frequency and JVT	Power down mode for IDDQ	Limited / Partial support MBIST used for Burn IN	 Scan based ATPG for IDDq Burn In Mode covering Memories and partial scan PLL Bypass for low frequency 	 DFT techniques to enable HVT and voltage margin test for designs including level shifters Burn In Mode covering 100% memories and scan 	 Self monitoring Burn In Burn-in Self Test

Design For Test – Continuous Improvement

Planned DFT Maturity for New NPIs

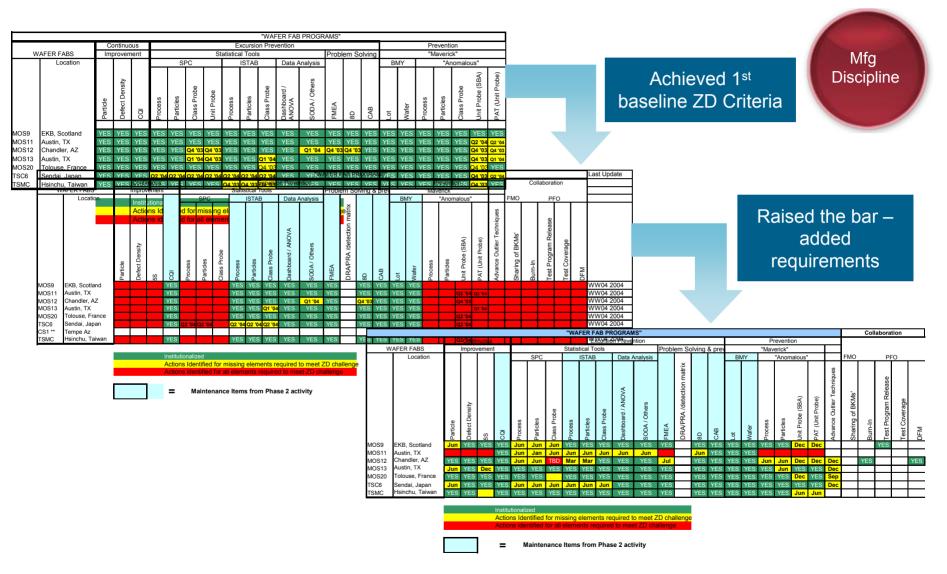
DFT Maturity	Level 0	Level 1	Level 2	Level 3	Level 4
Digital	 Ext. generated functional 	• SAF > 90%	• SAF > 95%	 Transition >85% Path Delay >= 200 out of 1000 most critical 	 Transition > 90% SAF > 99% Bridge > 80% Small-delay defect coverage Selective path-delay testing
Analog (ADC, DAC,PLL, Oscillators)	 Ext. generated functional 	 Partial Scan Wrapper 	 Full Scan Wrapper (DC) Ad-hoc analog test modes (based on designer intuition) 	 Additional signals to increase analog testability DC scan stuck-at > 95% AC Scan Wrapper if module running near Fsys. 	 Partial Analog BIST and/or critical test points (tool determined test points)
SRAM	 Externally generated 	 Large Array MBIST generated March C- or PMOVI algorithm 	 Data Retention support Checkerboard & Inverse tests Different data backgrounds run on the March 	 All RAMs BIST tested with same BIST type BIST March LR/LA better BIST X/Y fast addressing BIST Bit Mapping SCAN write through 	 Programmable BIST based on 14N coverage Sep BIST for DP RAMS BIST Intra-Word Coverage BIST Any-bit-fast tests SDD BIST Support ** LWSH BIST support ** BIST paths >= Func paths. ** - Only required if RAM has test mode
NVM, Flash	 Ext. generated functional based User modes only 	Array Test Modes	 Basic BIST supported by State Machine Independent erasable test row 	 Configurable BIST DC Scan logic > 98% Massively parallel test enabler (UTI or BDM based) MBIST Bit Mapping Support 	 Code Execution BIST that detects Address Decode SOF and Address Coupling Faults BIST paths >= Functional paths DC Scan logic part > 99% Transition delay on logic > 85%
I/O	 Ad hoc, functionally generated 	 Most I/Os controllable via register 	 Full control* of all pads I/O state (jtag or registers) 	Full control* of all pad electricals	All pad electrical controls observable via ATPG scan
Parametric, IDDQ, HVST,Burn- in, Voltage Margin, JVT Support	 No DFT support for IDDQ, High Voltage Stress, Burn in, Voltage Margin, Low Frequency and JVT 	Power down mode for IDDQ	 Limited / Partial support MBIST used for Burn IN 	 Scan based ATPG for IDDq Burn In Mode covering Memories and partial scan PLL Bypass for low frequency 	 DFT techniques to enable HVT and voltage margin test for designs including level shifters Burn In Mode covering 100% memories and scan

Ongoing

- FSL uses best-in-class Design-for-Test technology, test engineering processes to proactively enable Zero Defect Quality for NPIs.
- Statistical analysis through volume diagnosis ensures efficiency of institutionalized methods and enables further improvements through 'lessons learned'.
- FSL working with leading EDA vendors and universities and investing in research for new DFT technology:
 - New Fault Models to better model silicon defects:
 - Bridging Fault Model (statistical and layout based)
 - Timing Aware ATPG Small Delay Defects
 - Opens Defects
 - New DFT architectures:
 - Field Programmable BIST for SRAMs
 - Core Self Test for Safety Critical applications
- New technology is integrated into DFT Maturity Matrix as standard best practice and rolled out world wide.

Manufacturing & Continuous Improvement

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.


Zero Defects Methods in Manufacturing

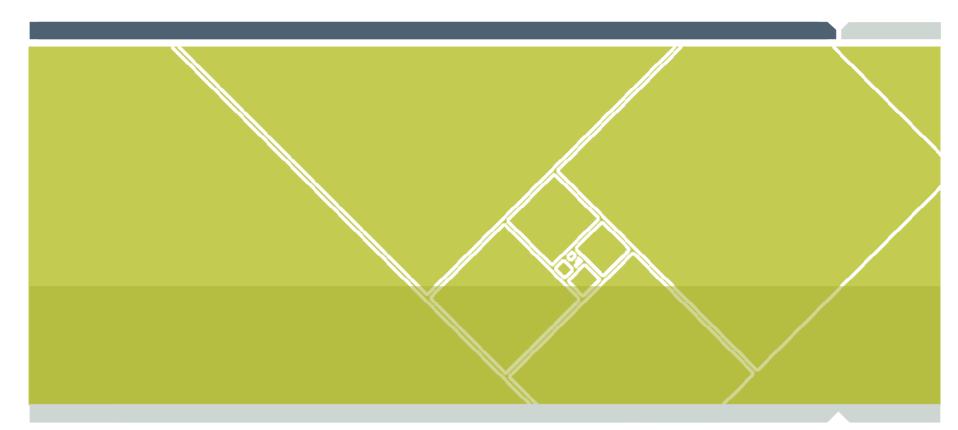
- Manufacturing uses a structured approach to institutionalize zero defect elements
- Die and Final Manufacturing SPC programs and specification limits identify rogue product & processes
- Specification limits are used as the gauge to determine if product is fit for use.
- Capability (CpK) studies are performed monthly on various inline process and class probe parameters
- Advanced Intelligent Manufacturing techniques such 'input controls' and Fault Detection Control are being deployed

	ZD Elements	
Product Zero Defect Program	JVT VCT/HVST Iddq Test Coverage (AEC Spec) Lessons learned Look Across Standardized NVM test methods Burn-In WebDSS CQI Entry	Containment Safe Launch Process
Manufacturing Zero Defect Program	PAT (Unit Probe) BMY SBL Phase1 SBL Phase 2	Tiocess
Division Specific Elements	PAT (Final Test) Gate Stress 100% Cold Test 100% Hot Test Inductive Load	
Factory Driven	Continuos Improvement- Particle Continuos Improvement- Defect Density SPC- Process, Particles SPC- Class Probe SPC- Unit Probe ISTAB- Process, Particles ISTAB- Class Probe Problem Solving- 8D/ 5 Why's Problem Solving- FMEA Problem Solving- FMEA Problem Solving- CAB Maverick Prevention- Lot Maverick Prevention- Wafer BMY Maverick Anamolous- Process, Particles Maverick Anamolous- Class Probe	Mfg Discipline

Zero Defects: Continuous Improvement

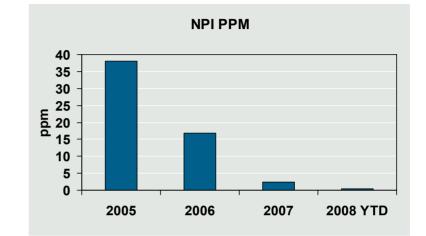

Safe Launch Plan Template

- The Safe Launch Template defines elements to be reviewed
 - 1. Information Overview
 - Goal, Team, Module info, Part info
 - 2. Shipment Plan Review
 - 3. IC Manufacturing Review
 - 4. Module Design Review
 - 5. Module Manufacturing Review
 - 6. Failure Analysis Plan Review
 - 7. Returns History Review
 - 8. Risk Assessment
- Actions items are captured and tracked within each section



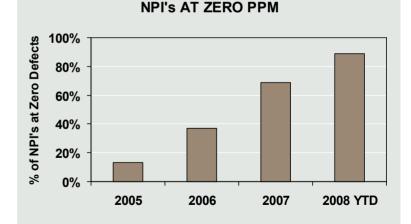
Freescale Zero Defects Methodology

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

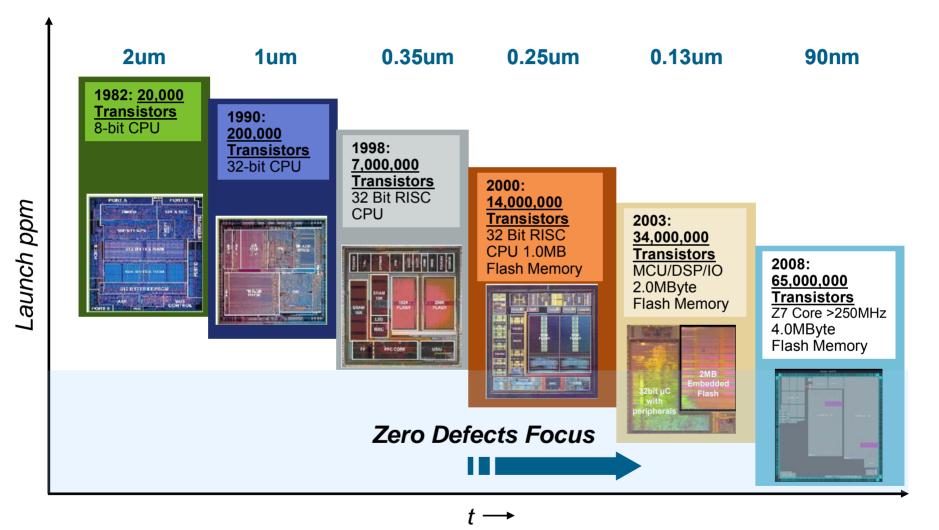

Results

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

New Product Launch PPM

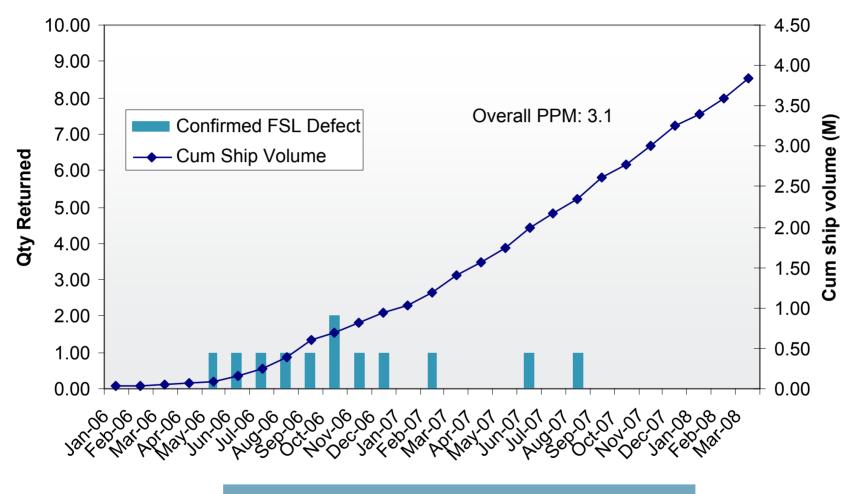

► Launch PPM

 First unit shipped through 100K units shipped, plus six months


Improving Launch PPM through:

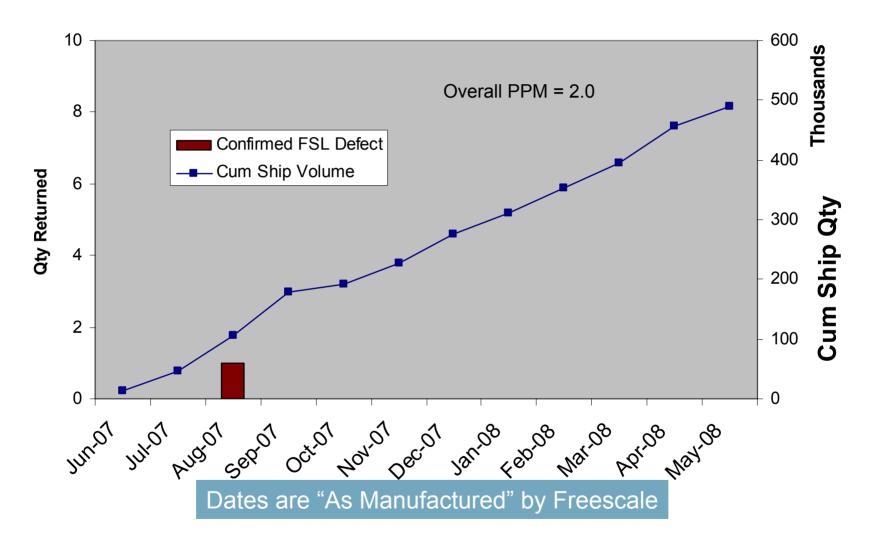
- Design for Zero Defect Methodology
- Improved Test Maturity Prior to Launch
- Manufacturing
- Safe Launch Partnerships

Microcontroller History

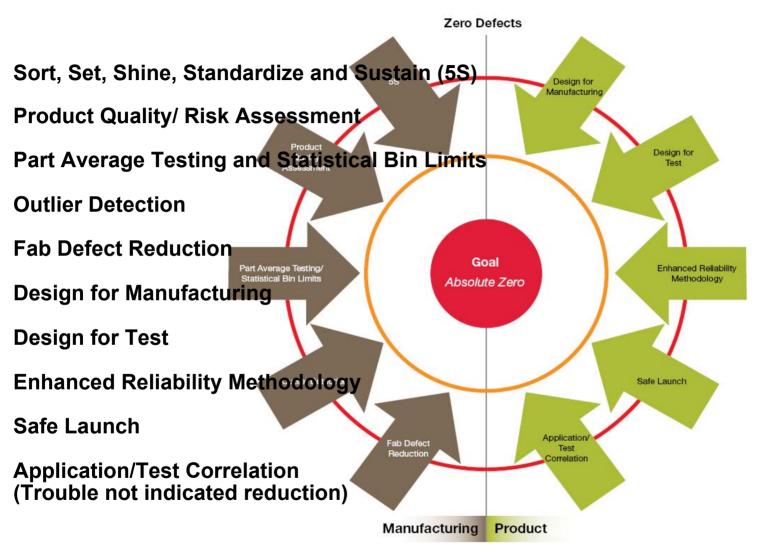


Microcontroller Zero-Defect Strategy

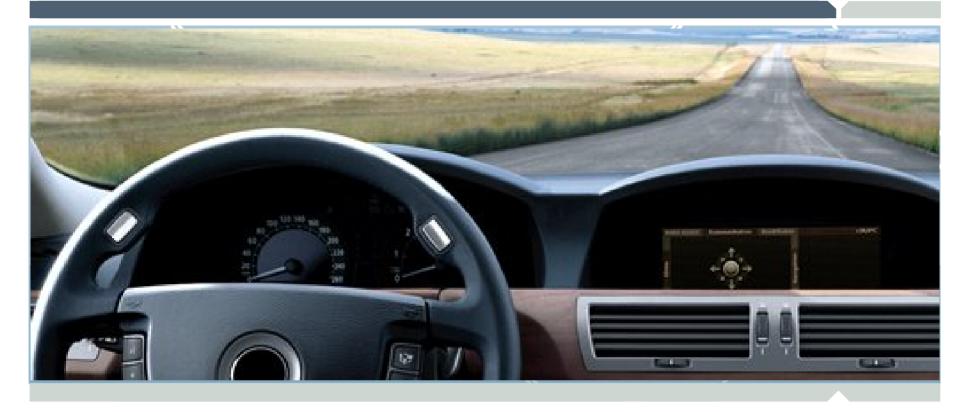
19	aks 996 design	S12 2000 design <10 ppm capability Q4'07 ~ 5.0 ppm	eSYS 2003 design <1 ppm capability	C90 2008 design <1 ppm capability
Design f Manufac	0 ppm capability Q07 ~10 ppm for cturability e Via Fix	 Defect Detection BIST, SCAN 	 Design for Manufacturability Enhanced design rules Line spreading Design for Functionality State of art verification/validation 	 4th Cycle of Zero Defect Learning Enhanced tools and processes improve maturity of our DFx capabilities. Design for Test
•Applic •"Look •In-line • Outlier (Γ, ULV cation specific test cacross" e and burn-in FA	 Zero Defects Foundation 	 Design for Test AC/DC SCAN, ATPG, IDDQ Partnership "Launch" 	 Design for Manufacturability Design for Functionality Design for Failure analysis
 Defect F Fab 	Reduction in-line monitors , AIT's, lot reviews		 Zero Defects Foundation 	Zero Defect Foundation
				14 A A A A A A A A A A A A A A A A A A A

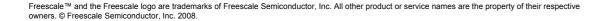

Copperhead PPM Trend

Dates are "As Manufactured" by Freescale

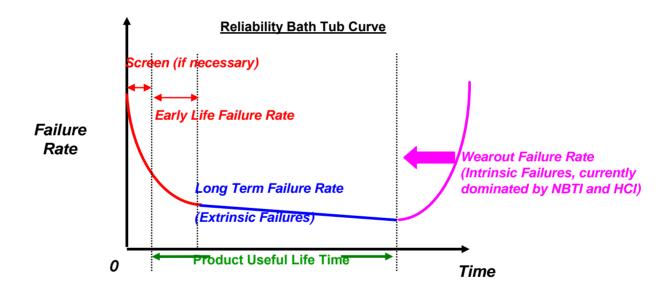


IMX31 Auto 27x27mm PPM Trend



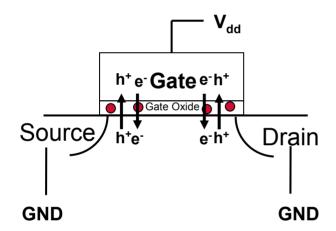

Freescale Zero Defects Summary

Moving Forward on this Journey



Challenges for Semiconductor Reliability in the Automotive Industry

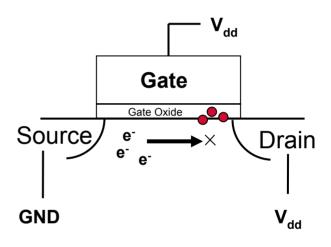
As technology advances, gate oxides and transistor channel lengths are shrunk at a faster rate than voltage is decreased, and material compositions are changing (nitrogen content in oxides, etc.); thus, the wear out portion of the curve generally shifts to the left.



Intrinsic reliability lifetimes of new technologies are now on the order of expected product use times in the field.

Advanced CMOS Intrinsic Wearout Mechanisms

Dominant intrinsic reliability failure mechanisms in advanced CMOS technologies are <u>Negative Bias Temperature Instability</u> (NBTI) and <u>Hot Carrier Injection</u> (HCI) which cause parametric shifts with some distribution, instead of hard failures.


Negative Bias Temperature Instability (NBTI):

Physical Mechanism:

• Electrons/holes that tunnel across the gate oxide create energetic positive charges that damage or get trapped in the gate oxide.

Effect:

- Primarily an increase in Vt due to trapped charges.
- Occurs in PMOS only.

Hot Carrier Injection (HCI):

Physical Mechanism:

- Electrons/Holes scatter as they go from source to drain.
- Damaging the interface and oxide.

Effect:

- Reduction of mobility (conductance) of the transistor.
- Change in Vt due to charge build-up in oxide.
- Occurs in both NMOS and PMOS

Performance Shift Mitigation Activities at Freescale

1) Life Test Simulation Optimization

Life Test stress conditions (voltage, temperature) are optimized to ensure AEC required stress time simulates expected field-use time.

2) Life Test Shift Analysis

Critical AC/DC parameters are measured before and after required life test to check for general shifts due to extrinsic or intrinsic failure mechanisms.

3) Intrinsic Reliability Shift Analysis

Required for products in CMOS090 and newer technologies. The general procedure is as follows:

- a) Measure performance before and after life test, preferably at a readpoint that simulates expected field-use time assuming the <u>NBTI</u> failure mechanism (may be different readpoint than (1))
- b) Extrapolate life test performance shifts to expected field shifts, based on NBTI models developed during intrinsic reliability testing. Control sample data is taken into account at this step.
- c) Add HCI effects based on NBTI versus HCI shifts observed during intrinsic reliability testing, since HCI effects are not generally observed during low frequency life testing.
- d) Create product test guardbands based on statistical distribution of normalized shifts.

Performance Robustness Validation Activities Moving Forward

1) Split Lot Analysis

Performance data is being taken on nominal versus slow PMOS transistor lots to check which patterns may be affected by NBTI. Split lot results will be checked against life test results to determine correlation.

2) Aging Simulation in Design

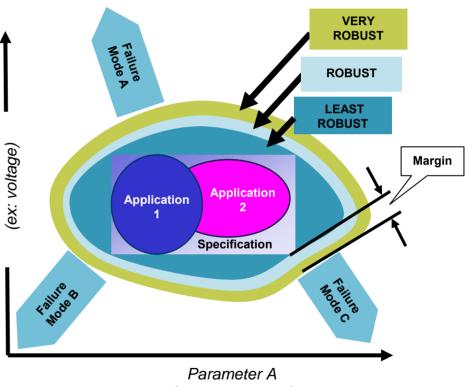
Aged transistor models are being input to design simulation tools and performance estimates checked against split lot and life test results.

3) Test Vehicle Evaluations

Stress ring oscillators and other test circuits are being stressed in parallel to device stresses to check for shift correlation.

Performance Shifts for Automotive Products

- At this time, performance shift concerns are minimal for Automotive devices, since they generally lag in technology and do not push performance limits.
- To minimize future risks and to assure Zero Defects for Automotive devices in advanced technologies, proactive steps are being taken to understand, minimize, and mitigate risks of performance shifts. Advanced reliability robustness validation techniques will be applied.



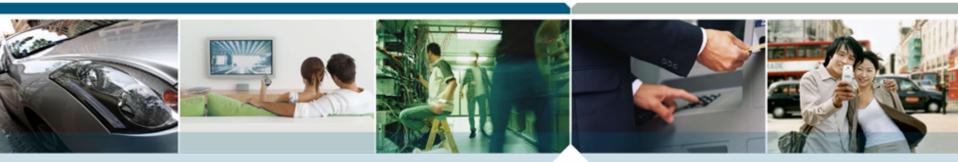
Robustness Validation

There are several techniques under evaluation in Freescale to understand Die, Die / Package, and Package wear out mechanisms

- ESD testing at multiple voltages followed by Operation Life studied to determine failure curves
- Test intrinsic silicon mechanisms to failure
- Extend traditional package level stresses to failure

ZVEI Robustness Validation Diagram

(ex: temperature)



Parameter B

It's Impossible. Zero=Zero.

- Freescale is committed to Zero Defects for Automotive
- Proven commitment to Drive Quality Improvement
- Demonstrated the Ability to Launch Products at Zero Defect Levels
- Continue to Develop and Implement New Zero Defect Strategies on Next Generation Products

Related Session Resources

Session Location – Online Literature Library

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=052577903644CB

Sessions

Session ID	Title			

Demos

Pedestal ID	Demo Title

