脊波框架的构造及其在图像去噪中的应用

谭 兮1,凌玉华2,谭 山3

(1.湖南工业大学 电气工程系,湖南 株洲 412008;

2.中南大学 信息科学与工程学院,湖南 长沙 410083;

3. 西安电子科技大学 智能信息处理研究所 陕西 西安 710071)

摘 要:为了能够充分利用现有的各种小波族,提出了脊波框架的概念。脊波框架的构造不需利 用 Meyer 小波的特殊"封闭性质",几乎各种正交小波基都能被用来构造此框架。叙述了脊波框架的构 造过程,并证明了其构成框架界为1的紧框架。最后为验证脊波框架的有效性进行了去噪实验。

关键词:正交小波 正交脊波 脊波框架 紧框架

Grossman 和 Morlet 于 1984 年提出的多分辨分析概 念为函数、信号的分析提供了一种强有力的工具印。 1988年提出的紧支撑正交小波基的构造[2]以及 1989年 提出的小波塔型算法^[3],标志着小波分析从此进入了 个快速发展的阶段。

经过20多年的发展,小波分析理论日趋完善,其应 用也迅速从信号处理、数学领域渗透到天文、地理、物 理、生物等多个学科,小波分析已经成为继傅立叶分析。 之后又一个强有力的分析工具。

小波分析之所以成功,一个重要原因是其对范围; 泛的函数类具有"稀疏"表示能力,尤其对"点奇异"的 函数更能表现出最优非线性逼近能力、然而,对于含 "线奇异"、"面奇异"的二维或高维函数,小波的非线性 逼近能力却不尽如人意。

寻求客观事物的"稀疏"表示方法,是计算机视觉、 数学、数据压缩等领域的专家学者们致力研究的目标。 小波分析的不足,促使人们开始从不同角度探索,试图 寻找比小波更好的"稀疏"表示工具。

脊波变换由 Candès 于 1998 年提出,这是一种非自 适应的函数表示方法^[4-5]。同年, Donoho 又在参考文献 [6]中构造了 L²(R²)中的一组规范正交基,并称之为正交 脊波。脊波变换与正交脊波对含直线奇异的多变量函数 均具有最优非线性逼近性能[4-6]。正交脊波的构造要用 到 Meyer 小波的两个特殊"封闭性质":

$$\psi_{j,k}(-t) = \psi_{j,1-k}^{(t)} \tag{1}$$

$$w_{i,l}(\theta + \pi) = w_{i,l+2^{i-1}}(\theta)$$
(2)

其中,"封闭性质"(2)对于2带小波来讲并不是一种普 适的性质,如Daubechies、Symlet等常用的小波均不满足 此性质。因此,性质(2)的存在使正交脊波的构造条件近 乎苛刻。

脊波变换实际上是将 R²上的直线奇异转化为 62

Radon 域中的点奇异进行处理,具有良好的"线型结构" 保持特性[2],这一点对于实际工程应用来讲具有非常重 要的意义。如何利用脊波变换的"线型结构"保持特性, 同时又使实际应用更灵活,是一个值得深入研究的问题。 性质各异的小波基已经成为信号处理、函数分析的 有力工具之一。本文将利用正交小波基构造 L²(R²)的一 一种框架界为1的紧框架。这种紧框架的框架元仍如 Donoho所构造的正交脊波一样表现为一种特殊的"平均" 了的脊函数,所以称这种紧框架为脊波框架。脊波框架的 构造,无需利用 Meyer 小波的特殊"封闭性质"(1)和(2)。 这样, 脊波框架的构造条件便非常宽松; 同时, 利用不同 性质的小波,还能构造出适合不同具体问题的性质不同 的脊波框架。

1 预备知识

本节给出文中所需引用的一些基本概念及相关定理。 在 $R \times [0, 2\pi]$ 上定义空间:

 $L^{2}(\mathrm{d}t\mathrm{d}\theta) := \{f(t,\theta) | f(t,\theta) = f(t,\theta+2\pi), \int_{-\infty}^{2\pi} \int_{-\infty}^{+\infty} |f(t,\theta)|^{2}$

 $dt d\theta < +\infty$

对于
$$f, g \in L^2(dtd\theta)$$
, 定义内积< $f, g \ge 1$

 $\overline{g}(t,\theta)dtd\theta$,并将由此内积诱导的范数记为 $||f(t,\theta)||_{L^{2}(dtd\theta)}^{2}$: $= < f, f > _{\circ}$

在 $R \times [0, 2\pi]$ 上定义空间:

 $L^{2}(\Theta) := \{F(t,\theta) | F(t,\theta) = F(t,\theta+2\pi), F(t,\theta) = F(-t,\theta+\pi), \\$ $|F(t,\theta)|^2 dt d\theta < +\infty \}_{\circ}$

对于
$$F, G \in L^2(\Theta)$$
, 定义内积 $[F, G] = \frac{1}{4\pi} \int_0^{2\pi} \int_{-\infty}^{2\pi} F(t, \theta)$

 $\overline{G}(t,\theta)$ dtd θ ,并将由此内积诱导的范数记为 || $F(t,\theta)$ || $_{L^{2}(\theta)}^{2}$: =[F, F]_◦ 显然 $L^2(\Theta) \subset L^2(dtd\theta)_\circ$

图像与多媒体技术

Image Processing and Multimedia Technology

(5)

设 $f \in L^2(\mathbb{R}^2)$ 充分光滑且快速衰减,定义函数f的 Radon 变换为^[8,9]:

$$(Rf)(t,\theta) = \int f(x)\delta(x_1\cos\theta + x_2\sin\theta - t)dx$$
(3)

式中, $\theta \in [0, 2\pi), t \in R$,并用 \Re 表示 Radon 变换(3)的值 域。 \Re 有如下性质^[8,9]:

(1)反对称性:
$$(Rf)(-t, \theta+\pi)=(Rf)(t, \theta)$$
 (4)
(2) % 是 $L^2(\Theta)$ 的闭子空间。

定义投影算子 P_m · $L^2(dtd\theta) \rightarrow \Re$

$$(P_{m}F)(t - \theta) - (F(t - \theta) + F(-t - \theta + \pi))/2$$

已经证明,
$$P_{\Re}$$
 是 $L^2(dt\theta)$ → ℜ 的正交投影算子^[6,7]。

$$\mathcal{L} \in L^2(\mathrm{dtd}\theta)$$
, 定义

反射算子:(Tf)(t)=f(-t) (6)

半周期平移算子:
$$(Sg)(\theta)=g(\theta+\pi)$$
 (7)

于是,正交投影算子可写为 $P_{\Re}=(I+T\otimes S)/2$ 。

2 脊波框架的构造

首先,在 L²(dtdθ)中构造一组可分规范正交基,经特殊规范化后,通过正交投影算子 P₃ 投影到 ℜ中。然后, 证明此投影在值域 ℜ构成框架界为 1 的紧框架。

在 $L^2(R)$ 中 给 定 两 组 规 范 正 交 小 波 基 : { $\psi_{j,k}$: $j, k \in Z$ } 和 { $\omega_{i,l}$: $i, l \in Z$ },并将 { $\omega_{i,l}$: $i, l \in Z$ }在[0, 2 π)上周期化,

$$\begin{split} \omega_{i,l}^{per}(\theta) &= \sum_{k=-\infty}^{\infty} \omega_{i,l} \left(\frac{\theta}{2\pi} + k \right)_{\circ} \\ \forall \ \ \, \nexists \ \, \forall \ \, J \leqslant 0 \ , \end{split}$$

[$\{\omega_{i,l}^{per}\}_{-\infty < i \leq J, 0 \leq l \leq 2^{-j}}, \{\phi_{J,l}^{per}\}_{0 \leq l \leq 2^{-j}}$] 在 $L^{2}([0, 2\pi))$ 上构成规范正交基^[8,9]。其中, $\phi_{J,l}^{per}$ 为 @ 最细尺度 J 所对应的尺度函数在[0,2\pi)上周期化所 为方便起见,用 @ 表示式(8)。显然,集合{ $w_{\lambda}^{n} = \psi \otimes \lambda \in \Lambda$ }在 $L^{2}(dtd\theta)$ 上构成规范正交基。其中,指标集

 $\{j, k: j, k \in \mathbb{Z}; i, l: -\infty < i \le J, 0 \le l < 2-j\}_{\circ}$

令
$$w'_{\lambda}$$
:=2 $\sqrt{\pi} w''_{\lambda}$,应用正交投影算子 P_{λ} 于 w'_{λ} ,得

$$w_{\lambda} := P_{\mathfrak{R}}(w_{\lambda}') = (\frac{1+1\otimes S}{2})w_{\lambda}' = 2\sqrt{\pi} P_{\mathfrak{R}}(w_{\lambda}'')$$
(9)

下面将证明 w_λ 在 ℜ 中构成框架界为 1 的紧框架, 先证明几个引理。

引理 1 : w_λ 在 ℜ 中完备。

证明: $\forall F \in \mathfrak{N}$, 有 $F \in L^2(dtd\theta)$, 且 $F = P_{\mathfrak{N}}F_{\circ}$ 由于 { $w''_{\lambda} = \psi \otimes \omega : \lambda \in \Lambda$ }在 $L^2(dtd\theta)$ 上构成规范正交基,所以有

$$F = \sum_{\lambda \in \Lambda} \langle F, w_{\lambda}'' \rangle w_{\lambda}'' = \sum_{\lambda \in \Lambda} \langle F, w_{\lambda}'' \rangle P_{\mathfrak{N}}(\frac{1}{2\sqrt{\pi}} w_{\lambda}')$$
$$= \frac{1}{2\sqrt{\pi}} \sum_{\lambda \in \Lambda} \langle F, w_{\lambda}'' \rangle w_{\lambda}$$
(10)

证毕。

引理 2 : ∀ *F* ∈ ℜ , 有

$$\langle w_{\lambda}'', F \rangle = \langle (T \otimes S) w_{\lambda}'', F \rangle$$
(11)

分别计算式(11)两端即可证明此引理。

引理 3:
$$\forall F \in \mathfrak{N}$$
, 有
 $\langle w_{\lambda}^{"}, F \rangle = 2\sqrt{\pi} [w_{\lambda}, F]$ (12)
证明: $[w_{\lambda}, F] = \frac{1}{1 + 1} \int_{0}^{2\pi} \int_{0}^{+\infty} w_{\lambda}(t, \theta) \overline{F}(t, \theta) dt d\theta$

$$= \frac{1}{4\pi} \times 2\sqrt{\pi} \int_{0}^{2\pi} \int_{-\infty}^{+\infty} \frac{w_{\lambda}'' + (T \otimes S)w_{\lambda}''}{2} \overline{F}(t,\theta) dt d\theta$$
$$= \frac{1}{2\sqrt{\pi}} \times \frac{1}{2} \{ \langle w_{\lambda}'', F \rangle + \langle (T \otimes S)w_{\lambda}'', F \rangle \}$$
$$= \frac{1}{2\sqrt{\pi}} \langle w_{\lambda}'', F \rangle$$

证毕。

定理 $1: w_{\lambda}(\lambda \in \wedge)$ 在 \Re 中构成框架界为 1 的紧框架。 证明: 对 $\forall F \in \Re$,

$$||F||^{2} = [F, F] = \sum_{\lambda} |[F, w_{\lambda}]|^{2}$$
(13)

由式(10)有

02.

$$[F, F] = \left[\frac{1}{2\sqrt{\pi}} \sum_{\lambda \in \Lambda} \langle F, w_{\lambda}^{"} \rangle w_{\lambda}, F\right]$$

$$= \sum_{\lambda} [F, w_{\lambda}][w_{\lambda}, F] = \sum_{\lambda} |[F, w_{\lambda}]|^{2}$$

证毕。
于是, 对于 $\forall F \in \Re, \mathbf{f}$

$$\sum_{\lambda} [F, w_{\lambda}] w_{\lambda} \tag{14}$$

$$\sum_{\lambda} |[F, w_{\lambda}]|^{2} = ||F||^{2}$$
(15)

存在从 ℜ 到 $L^2(R^2)$ 的等距映射^[6,10]。记此映射为 T_{\circ} 于是,对于 $\forall F, G \in \Re$, 记 f=T(F), g=T(G), 有

$$[F, G] = \langle f, g \rangle$$
(16)
$\blacksquare_{-} ||F||_{2(G)} = ||f||_{2(J_{-})}$ (17)

$$+ \mathbf{\Xi} , ||F||_{L^{2}(\Theta)}^{=||f||_{L^{2}}}(dx)$$
(17)

已经证明了 $w_{\lambda}(\lambda \in \wedge)$ 在 \Re 中构成框架界为 1 的 紧框架。令 $\rho_{\lambda}=T(w_{\lambda}), (\lambda \in \wedge)$ 。由于 T 保内积,于是有定 理 2。

定理 2: $\rho_{\lambda}(\lambda \in \Lambda)$ 在 $L^{2}(R^{2})$ 构成中框架界为 1 的紧框架。 于是,对于 $\forall f \in L^{2}(R^{2})$,

$$f = \sum_{\lambda} \langle f, \rho_{\lambda} \rangle \rho_{\lambda} \tag{18}$$

记
$$\psi_{j,k}^{\dagger}(t) = (\Delta^{\dagger}\psi)(t)$$
, 其中 Δ^{\dagger} 表示 $\frac{1}{2}$ 阶微分算子 $(\Delta^{\dagger}f)$

$$(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\omega} \hat{f}(\omega) |\omega|^{+\frac{1}{2}} d\omega; \dot{H} \ddot{u} \ddagger \ddot{H} \ddot{u} \ddagger F R^{+} \ddot{h} \mathcal{E}[Rf]$$

$$\begin{split} G &= \langle f, R^+G \rangle_{\circ} \quad f \neq \xi, \ \mathbb{E}, \ \mathbb$$

63

图像与多媒体技术 Image Processing and Multimedia Technology

$$\rho_{\lambda}(x) = \frac{1}{4\pi} \int_{0}^{2\pi} \psi_{j,k}^{+} (x_{1}\cos\theta + x_{2}\sin\theta)\omega_{i,l}(\theta)d\theta$$
(19)
从式(19)可以看出,脊波框架的框架元 ρ_{λ} 是由"平均"
脊角 $\theta_{i,l} = 2\pi/2^{i}$ 附近的脊函数 $\psi_{j,k}^{+} (x_{1}\cos\theta + x_{2}\sin\theta)$ 而得。用
Daubechies – 8 小波构造的脊波框架元如图 1 所示。

3 去噪实验

64

为检验本文构造的脊波框架的有效性、 面给 出一个图像去噪的实例。

实验中所用图像为一含直线和曲线奇异的分片 光滑函数,大小为 256×256,255 级灰度水平。含噪 图像由原图像叠加上不同噪声水平的高斯白噪声 而成。实验中所用变换包括:正交小波变换(DWT, 下采样), 冗余小波变换(UDWT, 非下采样), 滤波 器均为 Daubechies – 8; 正交脊波变换(O_Ridgelet); 用 DWT 实现的脊波框架变换(R_Frame)和用 UDWT 实现的脊波框架变换(U_R_Frame),其中所用小波滤波 器也为 Daubechies-8。所有变换均采用硬阈去噪 (3σ) 。 表1给出了不同噪声水平下的实验结果。

从表1不难看出,对于各种噪声水平,正交小波 变换的 PSNR 值均低于其他各种方法,例如,比用正 交脊波所得的去噪结果大约低 1dB 左右。而脊波框 架又好于正交脊波约 0.3-0.4dB。 冗余变换无疑比 非冗余变换有更高的 PSNR 值,其中,用 UDWT 实现

表	1	各种ā	と噪方	法的性	能比较	(PSNR))
---	---	-----	-----	-----	-----	--------	---

Noise level	DWT	O_Ridgelet	R_Frame	UDWT	U_R_Frame
15	30.9639	31.2075	31.5326	34.318	35.3746
20	29.2861	29.6982	30.0509	32.2668	34.0756
25	27.8041	28.513	28.9021	30.7049	33.0962
30	26.6904	27.5587	27.8101	29.4834	32.0935
40	24.7231	25.8161	26.3588	27.8679	30.676
60	22.3687	23.6770	23.9283	25.7513	28.2237
80	20.6152	21.9173	22.3935	24.3358	26.2391
100	19.2911	20.4148	20.8815	23.3936	24.8497

的脊波框架变换又比 UDWT 本身高 2-3dB 左右。

图 2 给出了所加高斯白噪声标准差为 20 时的去噪

图像。

图 2(b)是由正交小波得到的去噪图像,存在点状"振 铃效应",在边缘处表现得尤其明显,且边界模糊;图 2(c) 和图 2(d) 是用正交脊波和脊波框架得到的去噪图像,有 相似的视觉效果,与正交小波不同,这两种变换呈现一种 线状的"振铃效应"。事实上,这与所用变换的基或框架 元素的支撑区间形状有关 : 2 – D 小波变换由 1 – D 小波所 张成,基的支撑区间呈正方型,并随着尺度的增大而逐渐 趋于点状??;而从图1能发现,脊波框架的支撑区间呈长 条型,并具有高的脊线。值得注意的是,用正交脊波和脊 波框架所得结果不仅使 PSNR 值比下采样小波提高了约 -2dB,更重要的是不存在边界模糊的现象。图 2(e)是冗 余小波得到的结果,虽然 PSNR 值相对下采样的正交小 皮有了很大提高,冗余性的存在也使"振铃效应"大为减 然而边界模糊的现象依然存在。反观用 UDWT 实现 的脊波框架变换的去噪结果不仅 PSNR 值高,而且原图 像中的"线型"结构也得到了很好的保持。

(a)含噪图像, PSNR = 22.069 dB

PSNR=30.0509dB

(b)正交小波去噪

(d) 脊波框架去噪结果, (e) 冗余小波去噪结果, PSNR = 32.3023 dB

(c)正交脊波去噪 结果, PSNR=29.2041dB 结果, PSNR=29.6982dB

(f) 用 冗 余 小 波 实 现 的 脊波框架去噪结果, PSNR= 34.0756dB

图 2 各种去噪方法的视觉比较(噪声标准差为 20)

图像与多媒体技术 Image Process

」 多 保 1 4 技 小 Image Processing and Multimedia Technology

如何利用现有的理论和算法均成熟的各种小波基, 在顾及脊波变换的"线型结构"保持特性的同时又使应 用更具灵活性,是笔者着重考虑的问题。

本文利用 L²(dtd)中的张量正交小波基,构造了 L²(R²) 中的一组框架界为1的紧框架,即脊波框架。脊波框架 的构造不需利用 Meyer 小波特有的"封闭特性",使得框 架的构造条件远比正交脊波宽松,几乎各种正交小波基 都可被用来构造此框架。于是,针对不同的具体问题,通 过不同性质的正交小波,就能构造性质各异的脊波框架。

脊波框架构造过程的灵活性和脊波特有的"线型结构"保持特性将为实际工程应用提供一种新的有力工具。 参考文献

- GROSSMAN J, MORLET A.decomposition of hardy functions into square integrable wavelets of constant shape.SIAM J. Math.Anal., 1984, 15:723-736.
- [2] DAUBECHIES I.Orthogonal bases of compactly supported wavelets.Communications in Pure and Applied Mathematics, 1988, 41:909-996.
- [3] MALLAT S G.A theory for multiresolution signal decompo-

sition: the wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11:674-693.

- [4] CANDES E J.Ridgelets: Theory and Applications.Ph.D.Thesis, Department of Statistics, Stanford University, 1998.
- [5] CANDES E J.Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal., 1999, 6:197-218.
- [6] DONOHO D L.Orthonormal ridgelets and linear singularities. Tech.Report, Department of Statistics, Stanford University, 1998.
- [7] STARCK J L, CANDES E J, DONOHO D L. The curvelet transform for image denoising. IEEE Trans, Image Processing, 2002, 11(6): 670-684.
- [8] DEANS S R.The Radon Transform and some of its applications.Krieger: Malabar, Florida.1993.
- [9] Stéphane Mallat.信号处理的小波导引.杨力华,译.北京: 机械工业出版社,2003.
- [10] TAN S, JIAO L C.Ridgelet Bi-Frame.Appl.Comput.Harmon. Anal., 2006, 20: 391-402.

(收稿日期:2007-02-26)