
Micriµm
Empowering Embedded Systems

µC/OS-II

µC/OS-View

and
The Freescale MC9S12NE64

 (Using the Freescale DEMO9S12NE64 Evaluation Board)

Application Note
AN-1212

www.Micrium.com

http://www.micrium.com/

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

Table Of Contents

1.00 Introduction 3
1.01 Port Specific Details 3
1.02 µC/OS-View 4
1.03 Directories and Files 6
1.04 Codewarrior IDE 9
2.00 Example Code 10
2.01 Example Code, app.c 10
2.02 Example Code, app_cfg.h 13
2.03 Example Code, includes.h 13
2.04 Example Code, os_cfg.h 13
3.00 Board Support Package (BSP) 14
3.02 Board Support Package, bsp*.* 14
3.03 Configuring the PLL 19
3.04 Vectors.c 21
3.05 Creating Interrupt Service Routines 22
4.00 Porting to Other MC9S12 Derivatives 24
Licensing 26
References 26
Contacts 26

 2

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

1.00 Introduction

This document shows example code for using µC/OS-II and µC/OS-View on a Freescale
MC9S12NE64 processor. To demonstrate the MC9S12NE64, we used a Freescale
DEMO9S12NE64 Evaluation Board as shown in Figure 1-1.

We used the Freescale Codewarrior IDE version 4.5 to demonstrate this application. However,
other tool-chains could be used.

Figure 1-1, Freescale Explorer 16 Evaluation Board

The application code is downloaded into Flash using a P&E Micro BDM Multilink. When the
application is started, the 2 onboard LED’s toggle at different rates and µC/OS-View is
initialized.

1.01 Port Specific Details

This µC/OS-II port has been designed to operate using the MC9S12NE64 banked memory
model. Paging must not be enabled within the Codewarrior project options since the PPAGE
register save and restore functionality has been included in the µC/OS-II port.

This example uses the on chip PLL. Once configured, the processor clock is set to 50MHz and
the bus clock for 25MHz. The PLL settings may be changed from within BSP.h. Refer to the
section labeled “Configuring the PLL” for more information.

Additionally, this example assumes the use of ECT TC7 for the µC/OS-II Ticker. If TC7 is not
available, this you may configure an alternate ECT timer channel by adjusting the macro named
“OS_TICK_OC” within BSP.h accordingly. The file Vectors.c will also require modification.
See the section labeled “Vectors.c” for more information.

All ISRs must be written as specified in the section labeled “Creating Interrupt Service Routines”

 3

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

1.02 µC/OS-View

The application code described in this application note allows you to connect a Windows-based
PC to your target and display run-time information about your target in a Window as shown in
Figure 1-2. This is done via an add-on module called µC/OS-View.

Note that you can ‘disable’ µC/OS-View by removing the µC/OS-View files from the build and
setting OS_VIEW_MODULE to 0 in os_cfg.h. You would need to do this is you didn’t purchase
µC/OS-View from Micriµm.

µC/OS-View is a combination of a Microsoft Windows application program and code that
resides in your target system (in this case, the MC9S12NE64). The Windows application
connects with your system via an RS-232C serial port at a default baud rate of 38,400 BPS. This
can of course be changed. The Windows application allows you to 'View' the status of your tasks
which are managed by µC/OS-II.

µC/OS-View allows you to view the following information from a µC/OS-II based product:

The address of the TCB of each task (up to 253 tasks)
The name of each task
The status (Ready, delayed, waiting on event) of each task
The number of ticks remaining for a timeout or if a task is delayed
The amount of stack space used and left for each task
The percentage of CPU time each task relative to all the tasks
The number of times each task has been 'switched-in'
The execution profile of each task
More.

µC/OS-View also allows you to send commands to your target and allow your target to reply
back and display information in a 'terminal window'.

µC/OS-View is currently configured to use SCI0 as the default serial port. This may be changed
by adjusting the macro OS_VIEW_COMM_SEL within app_cfg.h to either OS_VIEW_SCI_0 or
OS_VIEW_SCI_1 based on the requirements of your application. The interrupt vector table will
also require modification to account for the change of SCI port. See the section labeled
“Vectors.c” and “Porting to Other MC9S12 Derivatives” for more information.

µC/OS-View is licensed on a per-developer basis. In other words, you are allowed to install
µC/OS-View on multiple PCs as long as the PC is used by the same developer. If multiple
developers are using µC/OS-View then each needs to obtain their own copy. Contact Micriµm
for pricing information and to obtain the OS-View Windows executable.

 4

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

Figure 1-2, µC/OS-View Windows’ ‘Viewer’

 5

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

1.03 Directories and Files

The code and documentation of the port are placed in a directory structure according to
“AN-2002, µC/OS-II Directory Structure”. Specifically, the files are placed in the following
directories:

µC/OS-II:

\Micrium\Software\uCOS-II\Source

This directory contains the processor independent code for µC/OS-II. The version used
was 2.82.

\Micrium\Software\uCOS-II\Ports\HCS12\Paged\Metrowerks
 This directory contains the standard processor specific files for a µC/OS-II port

assuming the Freescale Codewarrior IDE. In fact, these files could easily be modified to
work with other tool chains. However, you would place the modified files in a different
directory. Specifically, this directory contains the following files:

 os_cpu.h
 os_cpu_a.s
 os_cpu_c.c

µC/OS-View:

\Micrium\Software\uCOSView\Source
This directory contains portable source code for µC/OS-View.

 OS_VIEW.C
 OS_VIEW.H

\Micrium\Software\uCOSView\Ports\HCS12
This directory contains the µC/OS-View processor specific port for the MC9S12NE64.

 OS_VIEWc.C
 OS_VIEWc.H
 OS_VIEWa.S

OS_VIEWc.C contains low level UART initialization, functions for enabling and disabling
both Rx and Tx interrupts, and the RxTx_ISR Handler for used for processing both Rx
and Tx characters.

OS_VIEWc.H contains constants for defining µC/OS-View buffer sizes.

OS_VIEWa.S contains the low level Interrupt Service Routines for Rx and Tx interrupts.
These Interrupt Service Routines handle µC/OS-II related functionality, clear the
interrupt source, and then call the Rx and Tx ISR Handlers located in OS_VIEWc.C.

 6

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

Application Code:

\Micrium\Software\EvalBoards\Freescale\MC9S12NE64\FreescaleDemo
 \9S12NE64\Paged\Metrowerks\OS-View\

This directory contains the Freescale Codewarrior project file for the AN-1212.

 OS-View.mcp

\Micrium\Software\EvalBoards\Freescale\MC9S12NE64\FreescaleDemo
 \9S12NE64\Paged\Metrowerks\OS-View\Source

This directory contains the source code for an example running on the DEMO9S12NE64
evaluation board. It assumes the presence of µC/OS-II.

This directory contains:

 app.c
 app_cfg.h
 includes.h
 os_cfg.h
 datapage.c
 start12.c

app.c contains the test code, app_cfg.h contains application specific configuration
information such as task priorities and stack sizes, includes.h contains a master
include file used by the application, os_cfg.h is the µC/OS-II configuration file and
datapage.c and start12.c are provided by Codewarrior but have been placed in
the application directory for compatibility purposes.

Please see the section labeled “Porting to Other MC9S12 Derivatives” for more
information about datapage.c and start12.c.

\Micrium\Software\EvalBoards\Freescale\MC9S12NE64\Freescale
 \Demo 9S12NE64\Paged\Metrowerks\BSP

This directory contains the Board Support Package for the DEMO9S12NE64 evaluation
board. While some of the code in this directory may work on other MC9S12 derivatives,
routines that are hardware dependent such as LED_On()will require modification
depending on the hardware design of your EVB.

Please see the section labeled “Board Support Package” and “Porting to Other MC9S12
Derivatives” for more information related to the BSP.

This directory contains:

 BSP.c
 BSP.h
 nvm.c
 nvm.h
 Vectors.c

BSP.c contains hardware specific source code for LED services, PLL initialization,
µC/OS-II ticker initialization, and so on.

 7

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

BSP.h contains macros for configuring the system PLL and µC/OS-II time tick ECT
channel. Please see the section labeled “Porting to Other MC9S12 Derivatives” for more
information related to the BSP.h

nvm.c and nvm.h contain hardware access functions for reading and writing both
Flash and EEPROM during run-time. Neither of these files are used within the example
after NVM initialization has been completed, however, they have been provided for
convenience.

Vectors.c contains the processor interrupt vector table. This array of Interrupt Service
Routine addresses must be updated whenever a new interrupt is being configured on the
system. Interrupt vectors that are not in use should be plugged with the appropriate
Dummy ISR handler provided.

\Micrium\Software\EvalBoards\Freescale\MC9S12NE64\Freescale
 \Demo 9S12NE64\Paged\Metrowerks\OS-View\prm

 This directory contains the processor linker file. Additionally, interrupt service routine

vectors may be specified here as well. The user MUST remove all previously existing
vector definitions within this file in favor of those specified in Vectors.c. This file must
be changed when porting to a different MC9S12 derivative. See the section labeled
“Porting to Other MC9S12 Derivatives below”

 8

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

1.04 Codewarrior IDE

We used the Freescale Codewarrior IDE version 4.5 to compile and run the MC9S12NE64
example. You can of course use µC/OS-II with other tools. Figures 1-3 shows the project
source tree with all of the files necessary to build the example.

 Figure 1-3, Codewarrior Source Tree

 9

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

2.00 Example Code

As mentioned in the previous section, the test code for this board is found in the following
directories and will be briefly described:

\Micrium\Software\EvalBoards\Freescale\MC9S12NE64\Freescale
 \Demo 9S12NE64\Paged\Metrowerks\OS-View

It should be noted that processor header files and libraries are not included within the AN-1212
code archive since they are supplied by Freescale via the Codewarrior installation.

2.01 Example Code, app.c

app.c demonstrate some of the capabilities of µC/OS-II.

Listing 2-1, main()

void main (void) (1)
{
 INT8U err;

 BSP_IntDisAll(); (2)

 OSInit(); (3)

 OSTaskCreateExt(AppStartTask, (4)
 (void *)0,
 (OS_STK *)& AppStartTaskStk[APP_START_TASK_STK_SIZE - 1],
 APP_START_TASK_PRIO,
 APP_START_TASK_PRIO,
 (OS_STK *)&AppStartTaskStk[0],
 APP_START_TASK_STK_SIZE,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

#if OS_TASK_NAME_SIZE > 11
 OSTaskNameSet(APP_START_TASK_PRIO, "Start Task", &err); (5)
#endif

 OSStart(); (6)
}

L2-1(1) As with most C applications, the code starts in main().

L2-1(2) We start off by calling a BSP function (see bsp.c) that will disable all interrupts. We

do this to ensure that initialization doesn’t get interrupted in case we do a ‘warm
restart’.

L2-1(3) As will all µC/OS-II applications, you need to call OSInit() before creating any

task or other kernel objects.

 10

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

L2-1(4) We then create at least one task (in this case we used OSTaskCreateExt() to
specify additional information about your task to µC/OS-II). It turns out that
µC/OS-II creates one and possibly two tasks in OSInit(). As a minimum,
µC/OS-II creates an idle task (OS_TaskIdle() which is internal to µC/OS-II) and
OS_TaskStat() (if you set OS_TASK_STAT_EN to 1 in OS_CFG.H).
OS_TaskStat() is also an internal task in µC/OS-II.

L2-1(5) As of V2.6x, you can now name µC/OS-II tasks (and other kernel objects) and be

able to display task names at run-time or, with a debugger. In this case, we name
our first task ‘Start Task’.

L2-1(6) We finally start µC/OS-II by calling OSStart(). µC/OS-II will then start executing

AppStartTask() since that’s the highest priority task created. OSStart() does
not return.

Listing 2-2, AppStartTask()

static void AppStartTask (void *p_arg)
{
 (void)p_arg;

 BSP_Init(); (1)

#if OS_TASK_STAT_EN > 0
 OSStatInit(); (2)
#endif

#if OS_VIEW_MODULE > 0 (3)
 OSView_Init (38400);
 OSView_TerminalRxSetCallback(AppTerminalRx);
 OSView_RxIntEn();
#endif

 AppTaskCreate(); (4)

 while (TRUE) { (5)
 OSTimeDlyHMSM(0, 0, 0, 25); (6)
 }
}

L2-2(1) BSP_Init() is called to initialize the Board Support Package – the I/Os, the tick

interrupt, and so on. BSP_Init() will be discussed in the next section.

L2-2(2) OSStatInit() computes how fast the CPU runs when OS_TASK_STAT_EN is set

to 1 in OS_CFG.H.

L2-2(3) µC/OS-View has been adapted to this port. Setting OS_VIEW_MODULE to 1 in

OS_CFG.H would enable initialization of this module. A serial cable may be
optionally connected between the RS232 port and your PC for use with the µC/OS-
View Windows application.

L2-2(4) Call a user defined function for creating additional µC/OS-II tasks. This function is

not required and additional tasks could have been created directly within
AppStartTask(). In order to make the example more interesting, two additional
tasks are created as the result of this function call.

 11

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

L2-2(5) As with all task managed by µC/OS-II, the task body must be in the form of an

infinite loop. Tasks managed by µC/OS-II must never be allowed to exit. Instead,
tasks should be deleted using OSTaskDel()when they are no longer desired.

L2-2(6) As µC/OS-II tasks must either enter an infinite loop ‘waiting’ for some event to occur

or terminate itself. In this case, we wait for time to expire as the ‘event’. This is
accomplished by calling OSTimeDlyHMSM().

Listing 2-3, AppTask1 ()

static void AppTask1 (void *p_arg) (1)
{
 (void)p_arg;
 while (TRUE) {
 LED_Toggle(0); (2)
 OSTimeDlyHMSM(0, 0, 0, 100); (3)
 }
}

L2-3(1) The creation of AppTask1 is the result of the function call to AppTaskCreate()

within the task AppStartTask.

L2-3(2) This BSP function allows on board LEDs to be toggled irrespective of their initial

state. The function has been designed to take values between 0 and 2 that
correspond to each of the onboard LED’s. Note: the value 0 may be used to
indicates that ALL LEDs be toggled.

L2-3(3) As µC/OS-II tasks must either enter an infinite loop ‘waiting’ for some event to occur

or terminate itself. In this case, we wait for time to expire as the ‘event’. This is
accomplished by calling OSTimeDlyHMSM()with a timeout of 100 milliseconds.

Listing 2-4, AppTask2 ()

static void AppTask1 (void *p_arg) (1)
{
 (void)p_arg;
 while (TRUE) {
 LED_Toggle(0); (2)
 OSTimeDlyHMSM(0, 0, 0, 100); (3)
 }
}

L2-4(1) The creation of AppTask1 is the result of the function call to AppTaskCreate()

within the task AppStartTask.

L2-4(2) This BSP function allows on board LEDs to be toggled irrespective of their initial

state. The function has been designed to take values between 0 and 2 that
correspond to each of the onboard LED’s. Note: the value 0 may be used to
indicates that ALL LEDs be toggled.

L2-4(3) As µC/OS-II tasks must either enter an infinite loop ‘waiting’ for some event to occur

or terminate itself. In this case, we wait for time to expire as the ‘event’. This is
accomplished by calling OSTimeDlyHMSM()with a timeout of 500 milliseconds.

 12

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

2.02 Example Code, app_cfg.h

This file is used to configure:

 the µC/OS-II task priorities of each of the tasks in your application
 the stack size for each tasks
 µC/OS-View

2.03 Example Code, includes.h

includes.h is a ‘master’ header file that contains #include directives to include other header
files. This is done to make the code cleaner to read and easier to maintain.

2.04 Example Code, os_cfg.h

This file is used to configure µC/OS-II and defines the maximum number of tasks that your
application can have, which services will be enabled (semaphores, mailboxes, queues, etc.), the
size of the idle and statistic task and more. In all, there are about 60 or so #define that you can
set in this file. Each entry is commented and additional information about the purpose of each
#define can be found in the µC/OS-II book. os_cfg.h assumes you have µC/OS-II V2.83 or
higher but also works with previous versions of µC/OS-II.

 13

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

3.00 Board Support Package (BSP)

BSP stands for Board Support Package and provides functions to encapsulate common I/O
access functions in order to make it easier for you to port your application code. In fact, you
should be able to create other applications using the DEMO9S12NE64 evaluation board and
reuse these functions thus saving you a lot of time.

The BSP performs the following functions:

- Determine the MC9S12NE64s CPU clock and bus frequencies
- Configure the LED I/Os for the DEMO9S12NE64 EVB and MC9S12NE64 CPU
- Configuration and handling of the µC/OS-II tick timer
- Configuration and handling of the µC/OS-View measurement timer

The BSP for the DEMO9S12NE64 is found in the follow directory.

 \Micrium\Software\EvalBoards\Freescale\MC9S12NE64\Freescale
 \Demo 9S12NE64\Paged\Metrowerks\BSP

 The BSP files are:

 BSP.c
 BSP.h
 nvm.c
 nvm.h
 Vectors.c

3.02 Board Support Package, bsp*.*

We will not be discussing every aspect of the BSP but only cover topics that require special
attention.

Your application code must call BSP_Init() to initialize the BSP. BSP_Init() in turn calls
other functions when necessary.

Listing 3-1, BSP_Init()

void BSP_Init (void)
{
 INT32U sys_clk_frq;

#if PLL_EN > 0 (1)
 PLL_Init(); (2)
 BSP_SetECT_Prescaler(4); (3)
#endif

 OSTickISR_Init(); (4)
 LED_Init(); (5)

 sys_clk_frq = BSP_CPU_ClkFreq(); (6)
 sys_clk_frq /= 1000; (7)
 Flash_Init (sys_clk_frq); (8)

 14

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

}
L3-1(1) If PLL_EN is configured to 1 within BSP.h, the processor PLL will be initialized. The

conditional compilation for PLL initialization is necessary since the ECT is dependent
on system bus frequency. The ECT timer, TCNT, is a 16 bit up counter. The match
register used to create the µC/OS-II time tick is also a 16 bit value. If the timer
operates too quickly, then the number of time ticks necessary to obtain the desired
OS_TICKS_PER_SEC (see os_cfg.h) will overflow during the call to
OSTickISR_Init(). Therefore, the ECT prescaler must be increased from the
default value when the PLL is active.

L3-1(2) This function initializes the on chip PLL. First, the multiplier and divider are

configured, then the PLL is enabled, and finally, the system clock is switched from
the main oscillator to that of the PLL output.

L3-1(3) Adjust the ECT prescaler if the PLL is enabled to prevent an overflow of

OSTickCnts during the call to OSTickISR_Init().

L3-1(4) Initialize the selected ECT channel for use with the µC/OS-II time tick interrupt. The

code for this function is described below.

L3-1(5) Initialize the general purpose I/O pins used for controlling the onboard LEDs.

L3-1(6) Determine the CPU clock frequency in Hz during run time. It is highly recommended

that application code make use of this function in order to program system dividers
during runtime. This prevents the user from having to change all hard coded divider
values should the clock frequency need to be modified at a later time.

 Note: The system bus frequency is the CPU clock frequency divided by 2. Some

module input clocks use the CPU clock as a reference while others use the bus
clock. Be sure to determine the correct clock for the module being initialized and use
BSP_CPU_ClkFreq() / 2 when necessary.

L3-1(7) Convert the CPU clock frequency from Hz to KHz.

L3-1(8) Initialize the Flash memory access dividers.

 Note: Flash memory block writing is not utilized within this application. However, the

initialization of this module has been provided for convenience.

 15

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

Listing 3-2, OSTickISR_Init ()

static void OSTickISR_Init (void)
{
 INT32U cpu_frq;
 INT32U bus_frq;
 INT8U ECT_Prescaler;

 cpu_frq = BSP_CPU_ClkFreq(); (1)
 bus_frq = cpu_frq / 2; (2)

 ECT_Prescaler = TSCR2 & 0x07; (3)

 ECT_Prescaler = (1 << ECT_Prescaler); (4)

 (5)
 OSTickCnts = (INT16U)((bus_frq / (ECT_Prescaler * OS_TICKS_PER_SEC)) - 1);

#if OS_TICK_OC == 4 (6)
 TIOS |= 0x10; (7)
 TC4 = TCNT + OSTickCnts; (8)
 TIE |= 0x10; (9)
#endif

#if OS_TICK_OC == 5
 TIOS |= 0x20;
 TC5 = TCNT + OSTickCnts;
 TIE |= 0x20;
#endif

#if OS_TICK_OC == 6
 TIOS |= 0x40;
 TC6 = TCNT + OSTickCnts;
 TIE |= 0x40;
#endif

#if OS_TICK_OC == 7
 TIOS |= 0x80;
 TC7 = TCNT + OSTickCnts;
 TIE |= 0x80;
#endif

 TSCR1 = 0xC0; (10)
}

L3-2(1) Get the CPU operating frequency in Hz

L3-2(2) Divide the CPU frequency by 2 in order to obtain the bus clock frequency in Hz. This

value is used to calculate the correct number of timer increments for the desired OS
Tick rate.

L3-2(3) Determine the ECT prescaler value. The ECT prescaler acts as a divider to the input

clock of the ECT. The higher the ECT prescaler, the more slowly TCNT, the ECT up
counter register, increments. The ECT prescaler is an important piece of information
when calculating required timer channel match value.

L3-2(4) Convert the ECT prescaler register value into the decimal equivalent suitable for

mathematical calculations. (E.g. Turn the bit pattern ‘01’ into a prescaler value of 2
and so on).

L3-2(5) Compute the number of timer increments necessary to generate the desired
 µC/OS-II Tick rate.

 16

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

L3-2(6) If OS_TICK_OC in BSP.H is defined as 4, then configure TC4 as the µC/OS-II tick
source.

L3-2(7) Configure the desired timer channel as an output compare.

L3-2(8) Write the match register with the current value of the ECT counter (TCNT) plus the

number of ticks until the next desired match.

L3-2(9) Enable output compare interrupts on the desired ECT channel.

L3-2(10) Start the timer.

Listing 3-3, Tmr_TickISR_Handler()

void OSTickISR_Handler (void)
{
#if OS_TICK_OC == 4 (1)
 TFLG1 |= 0x10; (2)
 TC4 += OSTickCnts; (3)
#endif

#if OS_TICK_OC == 5
 TFLG1 |= 0x20;
 TC5 += OSTickCnts;
#endif

#if OS_TICK_OC == 6
 TFLG1 |= 0x40;
 TC6 += OSTickCnts;
#endif

#if OS_TICK_OC == 7
 TFLG1 |= 0x80;
 TC7 += OSTickCnts;
#endif

 OSTimeTick(); (4)
}

This function is called from an assembly interrupt service routine which informs µC/OS-II of the
interrupt and calls the ‘C’ code interrupt handler. See os_cpu_a.s and the section labeled
“Creating Interrupt Service Routines” for more information.

L3-3(1) If OS_TICK_OC is configured to 4

L3-3(2) Clear the interrupt source

L3-3(3) Adjust the timer channel match register so that a new time tick will occur after

OSTickCnts additional counts.

L3-3(4) Call OSTimeTick() to inform µC/OS-II of the clock tick.

 17

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

The ECT generates match interrupt when the up-counter value reaches the value stored within
the timer channel match register. After an interrupt occurs, the match register is incremented to
the next value for which a time tick interrupt is desired. The timer is allowed to free-run and
overflow without error when necessary.

The ECT generates match interrupt when the up-counter value reaches the value stored within
the timer channel match register. After an interrupt occurs, the match register is incremented to
the next value for which a time tick interrupt is desired. The timer is allowed to free-run and
overflow without error when necessary.

0xFFFF

0x0000

Interrupt on TCx Match TCNT

1 Millisecond at 50 MHz with
OS_TICKS_PER_SEC set to 1000

Figure 3-1, OS Tick Timer Operation

Figure 3-1, OS Tick Timer Operation

When the selected Timer issues an interrupt, the processor vectors to __T2Interrupt() or
__T4Interrupt() depending on which timer is enabled for use with the OS Ticker. These ISR
functions both call Tmr_TickISR_Handler() as described above in Listing 3-3. Only 1 timer
for the OS Ticker may be enabled at a time.

When the selected Timer issues an interrupt, the processor vectors to __T2Interrupt() or
__T4Interrupt() depending on which timer is enabled for use with the OS Ticker. These ISR
functions both call Tmr_TickISR_Handler() as described above in Listing 3-3. Only 1 timer
for the OS Ticker may be enabled at a time.

You should note that ALL of your ISRs should be written in assembly where OS related
processing may take place before calling an interrupt handler function of the form ‘interrupt
void MyISR_Handler(void)’ Refer to AN-1212 for details.

You should note that ALL of your ISRs should be written in assembly where OS related
processing may take place before calling an interrupt handler function of the form ‘interrupt
void MyISR_Handler(void)’ Refer to AN-1212 for details.

 18

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

3.03 Configuring the PLL

The PLL is an on chip peripheral capable of boosting the processor clock and bus frequencies
higher than the frequency provided by the supplied oscillator across the XTAL pins of the MCU.
Before attempting to reconfigure the PLL from BSP.h you should consult your MC9S12
derivative datasheet and understand the MCU’s absolute maximum ratings. The absolute
maximum ratings must be followed in order to prevent the possibility of damaging the device.

The MC9S12NE64 has a maximum processor clock (SYSCLK) of 50MHz. The bus clock
(BUSCLK) is always ½ of the processor clock and must never exceed 25 MHz. The oscillator
supplied on the DEMO9S12NE64 has an operating frequency of 25MHz.

Therefore, the highest possible settings for the PLL would be a multiplier of 2, and a divider of 1.

The PLL may be configured by adjusting the following macros within BSP.h:

OSCFREQ
PLL_EN
PLL_CLK_MUL
PLL_CLK_DIV

and is computed by the following formula:

((OSCFREQ * 2) * (PLL_CLK_MUL + 1) / (PLL_CLK_DIV + 1)

Where OSCFREQ is the frequency of the oscillator attached to the XTAL pins of the MCU. In the
case of the DEM09S12NE64 EVB, OSCFREQ is equal to 25 MHz.

The PLL may be disabled by setting the value of PLL_EN to 0. The example provided is capable
of running perfectly with the PLL either enabled or disabled. High performance applications may
wish to enable the PLL, while power aware devices such as portable electronics may wish to run
the device with the PLL disabled. A lower clock speed requires less operating power. The lowest
achievable clock frequency is determined by the value of the input oscillator across the XTAL
pins when the PLL is off. The operating frequency of the MC9S12NE64 must never fall below
5MHz. The minimum bus frequency would then be 2.5MHz.

When enabling the PLL on the MC9S12NE64, the highest possible values for PLL_CLK_MUL is
0, while the lowest possible value of PLL_CLK_DIV is 0.

Lets perform the math and see what happens when these values are used.

SYSCLK = ((25,000,000 * 2) * (0 + 1) / (0 + 1)
 = (50MHz * 1) / 1 = 50MHz

BUSCLK = SYSCLK / 2 = 25MHz

These values are within the maximum operating parameters for MC9S12NE64. However, other
MC9S12 derivatives may allows for a broader range of multiplies and dividers.

The following macros have been provided and are accessible during run-time should you
application need to know the value of SYSCLK or BUSCLK.

PLLCLK
BUS_CLK_FREQ

 19

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

However, the BSP function BSP_CPU_ClkFreq() also yields the current SYSCLK frequency
and is the preferred method for determine the system operating frequency.

Note: BSP_CPU_ClkFreq()returns a 32 bit unsigned integer representation of the SYSCLK
frequency. Dividing this value by 2 will yield the BUSCLK frequency during run-time. It is
recommended that users call this function before programming peripheral clock dividers so that
the dividers need not be re-evaluated should the clock frequency be adjusted at a later time.

This method is used when computing the µC/OS-II tick number of counts during initialization,
and when computing the baud rate for µC/OS-View. It is important to note that most, but not all,
MC9S12 peripherals use the BUSCLK as a reference clock source. An example of divider
initialization based on an unknown operating frequency may be performed as follows:

Listing 3-4, Set_SCI_BaudRate()

void Set_SCI_BaudRate (INT32U baud)
{
 INT32U baudDiv; (1)

 baudDiv = BSP_CPU_ClkFreq(); (2)
 baudDiv /= (2 * baud * 16); (3)

 SCI0BDH = baudDiv >> 8; (4)
 SCI0BDL = baudDiv & 0xFF; (5)
}

L3-4(1) Declare a 32 bit unsigned variable to hold the current SYSCLK frequency.

L3-4(2) Call BSP_CPU_ClkFreq() in order to obtain the current SYSCLK frequency.

L3-4(3) Divide the SYSCLK frequency by 2 in order to obtain the BUSCLK frequency. Note:

the SCI’s reference clock is derived from BUSCLK. Next divide the BUSCLK
frequency by 16 to account for the SCI over sampling. The is mentioned in the SCI
block documentation under the section for computing the SCI baud rate. Finally,
divide by the desired baud rate to achieve the SCI divider that corresponds to the
specified baud rate and the current MCU operating frequency. If you look closely, the
division by 2, 16, and the desired baud was optimized in order to reduce the amount
of truncation. Truncation on smaller dividers such as 6.78 (for 115,200 baud given
BUSCLK = 25MHz) can be significant. The actual baud rate after truncation would
be (BUSCLK / (2 * 16 * 6) = 130,208 baud which contains enough error to
not work properly. If necessary, take the ceiling of fractional dividers. Its better to
operate too slow than too fast.

L3-4(4) Write the high byte of the divider to the baud rate high byte register.

L3-4(5) Write the low byte of the divider to the baud rate low byte register.

 20

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

3.04 Vectors.c

Vectors.c contains the interrupt vector table for the application. The interrupt vector table is
necessary so that the processor knows the address of the interrupt service routine to jump to
when a specific interrupt occurs. Failure to properly plug the interrupt vector table with the
address of a valid handler may cause the application to crash. If a wrong, but valid, interrupt
handler address is specified for vector number ‘n’ and the interrupt occurs, the interrupt source
will not be cleared the processor will execute the same interrupt service routine indefinitely.

Care should be taken when working with the interrupt vector table.

For convenience, dummy interrupt service routines have been provided for all 64 vectors. This
does not include the reset vector since its value must always be set correctly. When an interrupt
vector is not in use, the dummy ISR for that vector should be plugged. In the case of a spurious
interrupt, the processor will vector to the dummy ISR and loop indefinitely. Should this occur, you
may be able to debug the application and catch the processor in the dummy interrupt service
routine thus identifying the source of the spurious interrupt. The correct action may then be taken
to correct the application to prevent this type of error in the future.

When plugging the interrupt vector table with a new vector, a ‘C’ prototype in the form of:

extern void near MyISR(void);

Must be provided at the top of the file. The name of the ISR may then be plugged into the correct
location of the interrupt vector table.

The following vectors are used by µC/OS-II and should not be modified:

Vector 4: SWI. Used to perform the µC/OS-II context switch.

Vector 15: Standard Timer Channel 7. This may be adjusted to one of the other Standard Timer
Channel vectors if desired. See the section labeled “Porting to Other MC9S12 Derivatives” for
more information.

Vector 20: SCI0. The selected communication port for µC/OS-View. SCI1 may be used instead
of SCI0 if desired. Be sure to adjust app_cfg.h accordingly.

 21

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

3.05 Creating Interrupt Service Routines

All interrupt service routines must contain a short assembly routine. The address of the assembly
routine is used to plug the interrupt vector table, while the content is designed to notify µC/OS-II
of the interrupt and call the user supplied interrupt handler written in either assembly or ‘C’ code.

The prototype specified at the top of Vectors.c (See section 3.04 above) is the ‘C’ code
prototype for the following assembly interrupt service routine. It is this prototype that allows you to
plug the interrupt vector table with the name (address) of the ISR from ‘C’.

As a reminder, the prototype is written as follows:

extern void near MyISR(void);

Of course, the name of the ISR would change each time a new ISR is declared since two ISR’s of
the same name cannot exist in the system simultaneously.

The format of an interrupt service routine is as follows:

Listing 3-5, MyISR

NON_BANKED: section (1)

PPAGE: equ $0030 (2)

Xdef MyISR_Handler (3)

Xref OSIntExit (4)
xref OSIntNesting (5)
xref OSTCBCur (6)
xref OSView_RxTxISRHandler (7)

MyISR:
 ldaa PPAGE (8)
 psha (9)

 inc OSIntNesting (10)

 ldab OSIntNesting (11)
 cmpb #$01 (12)
 bne MyISR1 (13)

 ldy OSTCBCur (14)
 sts 0,y (15)

MyISR1:
 call OSTickISR_Handler (16)

 cli (17)
 call OSIntExit (18)

 pula (19)
 staa PPAGE (20)

 rti (21)

L3-4(1) Force the contents of the assembly file, perhaps named: myisr_a.s, into

NON_BANKED memory. This is critical since the processor only has a 16 bit address
bus. Vectors that are accidentally placed into banked memory will have a 24 bit
address (8 bit page number + 16 bit address) and will overflow the slot in the
interrupt vector table.

 22

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

L3-4(2) Define the address of the PPAGE register. This register is memory mapped and
located at address 0x30 on the MC9S12NE64 MCU.

L3-4(3) XDEF is a Codewarrior assembly directive for prototyping external functions. This

directive is equivalent to ‘extern’ in ‘C’ and allows the assembler to find the address
of the ISR handler specified below on line item (16). The name being XDEF’d should
match the name of your ISR handler whether it be in assembly or ‘C’ code. This
directive is not necessarily portable to other assemblers.

L3-4(4) (4), (5), (6), and (7), are external references to variables defined in ‘C’. These

variables are referenced from the context of the assembly ISR and must therefore be
declared external such that they are visible to the assembler and ISR file. This
directive is not necessarily portable to other assemblers.

L3-4(8) Obtain a copy of the PPAGE register. This register must be saved because the

µC/OS-II is operating under the BANKED memory model.

L3-4(9) Store the PPAGE register on the stack of the task that was interrupted.

L3-4(10) Increment OSIntNesting. This notifies µC/OS-II that at least one interrupt is in

progress and that the scheduler should not schedule any new tasks to run until all
nested interrupts have completed (e.g. OSIntNesting equals 0).

L3-4(11) Load a copy of OSIntNesting from memory into a register so a comparison may

be made.

L3-4(12) Check OSIntNesting to see if its value is 1. If so, then this is the only interrupt in

progress and no nested interrupts are pending completion.

L3-4(13) If interrupt have been nested, skip storing the current tasks stack pointer back into its

task control block and jump to MyISR1. Note: the name of the ISR and the labels
used within it must be changed for each new ISR implemented in the system. For
convenience, the number ‘1’ is added to the end of the ISR name in order to create a
unique and convenient label to jump to.

L3-4(14) If no interrupts have been nested then the scheduler is free to schedule a new task

when the ISR completes. Therefore the address of the current task TCB (Task
Control Block) is obtained.

L3-4(15) The stack pointer of the interrupted task is stored within its own TCB should the

scheduler perform a context switch at the end of the ISR.

L3-4(16) Call the user defined ISR handler. Generally the ISR handler is defined and

prototyped in ‘C’.

L3-4(17) Re-enable interrupts. This allows interrupts to nest one another.

L3-4(18) Call OSIntExit(). This informs µC/OS-II about the end of the interrupt. This is

effectively the same as decrementing OSIntNesting however, the scheduler is
also involved and if a context switch is required, OSIntExit() will not return.

L3-4(19) If a context switch is not necessary, obtain the copy of PPAGE saved at the

beginning of the ISR

 23

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

L3-4(20) Restore the PPAGE register.

L3-4(21) Return to the interrupted task.

4.00 Porting to Other MC9S12 Derivatives

Due to the similarities between various MC9S12 derivatives, it is easy to port the sample
application from one derivative to another. The following steps must be performed in order to
switch MCU derivatives:

Porting to different MC9S12 derivatives:

1) Navigate to C:\Micrium\Software\EvalBoards\Freescale\MC9S12NE64\Freescale Demo

9S12NE64\Paged\Metrowerks\OS-View and open the project file named "OS-View.mcp"
2) Replace the processor header files in the source tree with those from the desired

derivative. Adjust includes.h accordingly.
3) Replace the CMD directory contents with the command files from a project built for the

derivative of your choice.
4) Obtain a .prm file from a sample project belonging to the derivative of your choice. The

.prm file contains linker configuration directives for the desired MCU derivative. Replace
existing the linker .prm located in the below directory with the .prm of the new derivative.

 \Micrium\Software\EvalBoards\Freescale\MC9S12NE64\Freescale
 \Demo 9S12NE64\Paged\Metrowerks\OS-View\prm

 Note: Generally Codewarrior defines the Startup vector in the .prm file. All interrupt vector

references MUST be removed from the .prm in favor of those already specified in
Vectors.c.

4) Update BSP.c functions for LED_On(), LED_Off(), LED_Toggle() etc... to match your

hardware configuration if required.
6) Adjust the macro OSCFREQ within BSP.h to account for a different oscillator frequency if

applicable.
5) Ensure that the PLL settings within BSP.h are suitable for use within the new derivative.

If you are unsure, disable the PLL temporarily until the proper settings can be
determined.

Caveats:

1) Vectors.c is provided as is and is assumed to be correct for most MC9S12 derivates.

Vectors can be added by prototyping the assembly ISR handler as an external
at the top of the file, and then plugging the correct array location with the name of the ISR
routine. See section 3.04 labeled “Vectors.c” for more information.

2) The example provided assumes the use of ECT TC7 for the OS Ticker. If TC7 is not
available, this may be changed by adjusting the macro named "OS_TICK_OC" within
BSP.h and by adjusting Vectors.c and placing "OSTickISR" in the desired vector location.

3) Start12.c may need to be replaced with an equivalent file from a project built for the
derivative of your choice.

Note: The MC9S12NE64 derivative only has 4 ECT channels starting from number 4 and ending
on number 7. Configuration checking within BSP.h prevents the setting of OS_TICK_OC to any

 24

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

value out side of this range, however, the check may be disabled if you choose to run this
example on a MC9S12 derivative with more ECT channels.

 25

 Micriµm
 µC/OS-II and µC/OS-View for the Freescale MC9S12NE64

Licensing

If you intend to use μC/OS-II in a commercial product, remember that you need to contact
Micriµm to properly license its use in your product. The use of μC/OS-II in commercial
applications is NOT-FREE. Your honesty is greatly appreciated.

References

MicroC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
CMP Technical Books, 2002
ISBN 1-5782-0103-9

Contacts

CMP Books, Inc.
6600 Silacci Way
Gilroy, CA 95020 USA
Phone Orders: 1-800-500-6875
 or 1-408-848-3854
Fax Orders: 1-408-848-5784
e-mail: rushorders@cmpbooks.com
WEB: http://www.cmpbooks.com

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

Freescale Technology Inc.
2355 West Chandler Blvd.
Chandler, Arizona 85224-6199
USA
480-792-7200
WEB: www.Freescale.com

 26

mailto:rushorders@cmpbooks.com
http://www.cmpbooks.com/subject/embedded_systems
mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.microchip.com/

	 1.00 Introduction
	1.01 Port Specific Details
	1.02 µC/OS-View
	 1.03 Directories and Files
	 1.04 Codewarrior IDE
	 2.00 Example Code
	2.01 Example Code, app.c
	2.02 Example Code, app_cfg.h
	2.03 Example Code, includes.h
	2.04 Example Code, os_cfg.h
	3.00 Board Support Package (BSP)
	3.02 Board Support Package, bsp*.*
	 3.03 Configuring the PLL
	 3.04 Vectors.c
	 3.05 Creating Interrupt Service Routines
	4.00 Porting to Other MC9S12 Derivatives
	 Licensing
	References
	Contacts

