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1.00 Introduction 
 
ARM has been working on a new architecture called the Cortex for a number of years.  During 

development, µC/OS-II was used to validate some of the design aspects and was used as a source of 

ideas to create new capabilities to support RTOSs.  In other words, µC/OS-II was the first RTOS ported 

to the Cortex. 
 

This application note describes the ‘official’ Micrium port for µC/OS-II on the Cortex-M4 processor.  

Figure 1-1 shows a block diagram showing the relationship between your application, µC/OS-II, the port 

code and the BSP (Board Support Package).  Relevant sections of this application note are referenced on 
the figure. 
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Figure 1-1, Relationship between modules. 
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2.00 The ARM Cortex-M4 programmer’s model 
 
The visible registers in an ARM Cortex-M4 processor are shown in Figure 2-1.  The ARM Cortex-M4 has a 
total of 20 registers.  Each register is 32 bits wide. 
 

R0-R12 R0 through R12 are general purpose registers that can be used to hold data as well as 

pointers. 
 
R13 Is generally designated as the stack pointer (also called the SP) but could be the recipient 

of arithmetic operations.  There are actually two stack pointers (SP_process and 

SP_main) but only one is visible at any given time.  SP_process is used for task level 

code and SP_main is used for exception processing. 

 
R14 Is called the Link Register (LR) and is used to store the contents of the PC when a Branch 

and Link (BL) instruction is executed.  The LR allows you to return to the caller.   

 
R15 Is dedicated to be used as the Program Counter (PC) and points to the current instruction 

being executed.  As instructions are executed, the PC is incremented by either 2 or 4 

depending on the instruction. 
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Figure 2-1, ARM Cortex-M4 Register Model. 
 
 
xPSR There are three separate registers to hold the sate of the CPU: APSR, IPSR and EPSR.  

The APSR contains application status such as shown in Figure 2-2. 
 

 
 

Figure 2-2, The APSR Register. 

R0 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

R10 

R11 

R12 

R13 (SP_process) 

R14 

R15 

R13 (SP_main) 

APSR 

IPSR 

EPSR 



  µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60 

   

8 

N 
Bit 31 is the ‘negative’ bit and is set when the last ALU operation produced a negative 
result (i.e. the top bit of a 32-bit result was a one). 
 
 Z 
Bit 30 is the ‘zero’ bit and is set when the last ALU operation produced a zero result (every 
bit of the 32-bit result was zero). 
 
C 
Bit 29 is the ‘carry’ bit and is set when the last ALU operation generated a carry-out, either 
as a result of an arithmetic operation in the ALU or from the shifter. 
 
V 
Bit 28 is the ‘overflow’ bit and is set when the last arithmetic ALU operation generated an 
overflow into the sign bit. 
 
Q 
Bit 27 is the sticky saturation flag. 

 
 
 
  The Interrupt PSR (IPSR) contains the ISR number of the current exception activation 

and is shown in Figure 2-3. 
  

 
 

Figure 2-3, The IPSR Register. 
 

 
  The Execution PSR (EPSR) contains two overlapping fields: 
 
  • the Interruptible-Continuable Instruction (ICI) field for interrupted load multiple and store 

multiple instructions 
 
  • the execution state field for the If-Then (IT) instruction, and the T-bit (Thumb state bit). 
 

   
 

 

Figure 2-4, The EPSR Register. 
 

 
  On entering an exception, the processor saves the combined information from the three 

status registers (referred to as xPSR) onto the stack. 
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3.00 µC/OS-II Port for the ARM Cortex-M4 processors 
 
We used the IAR EWARM V6.10 (Embedded Workbench for the ARM) to test the port.  The EWARM 
contains an editor, a C/EC++ compiler, an assembler, a linker/locator and the C-Spy debugger.   The 
C-Spy debugger actually contains an ARM Cortex-M4 simulator which allows you to test code prior to run 
it on actual hardware.  We tested the ARM Cortex-M4 port on a Freescale TWR-K60N512 development 
board as shown in Figure 3-1. 

 
 

Figure 3-1, Freescale TWR-K60N512 Development Kit (Kinetis K60 chip) 
 
 
You can adapt the port provided in this application note to other ARM Cortex-M4 based compilers.   The 
instructions (i.e. the code) should be identical and all you have to do is adapt the port to your compiler 
specifics.  We will describe some of these when we cover the contents of the different files. 
 

The port assumes that you are using µC/OS-II V2.92 or higher. 
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3.01 Directories and Files 
 
The software that accompanies this application note is assumed to be placed in the following directory: 
 
 \Micrium\Software\uCOS-II\ARM-Cortex-M4\Generic\IAR  

 

Like all µC/OS-II ports, the source code for the port is found in the following files:  

 
 OS_CPU.H 
 OS_CPU_C.C 
 OS_CPU_A.ASM 
 OS_DBG.C 

 
Test code and configuration files are found in their appropriate directories and are described later.  
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3.02 OS_CPU.H 
 

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and 

typedefs.  

 
 

3.02.01 OS_CPU.H, macros for ‘externals’ 
 
OS_CPU_GLOBALS and OS_CPU_EXT allows us to declare global variables that are specific to this port 

(described later). 
 

Listing 3-1, OS_CPU.H, Globals and Externs 
 

#ifdef  OS_CPU_GLOBALS 
#define OS_CPU_EXT 
#else 
#define OS_CPU_EXT  extern 
#endif 
 

3.02.02 OS_CPU.H, Data Types 
 

Listing 3-2, OS_CPU.H, Data Types 
 

typedef unsigned char  BOOLEAN; 
typedef unsigned char  INT8U;  
typedef signed   char  INT8S;  
typedef unsigned short INT16U;            // (1) 
typedef signed   short INT16S;  
typedef unsigned int   INT32U; 
typedef signed   int   INT32S;  
typedef float          FP32;              // (2) 
typedef double         FP64;  
 
typedef unsigned int   OS_STK;            // (3) 
typedef unsigned int   OS_CPU_SR;         // (4) 

 
L3-2(1)  If you were to consult the IAR compiler documentation, you would find that an short is 

16 bits and an int is 32 bits.  Most Cortex-M4 compilers should have the same 

definitions. 
 

L3-2(2)  Floating-point data types are included even though µC/OS-II doesn’t make use of 

floating-point numbers. 
 
L3-2(3)  A stack entry for the Cortex-M4 processor is always 32 bits wide; thus, OS_STK is 

declared accordingly.  All task stacks must be declared using OS_STK as its data type. 

 
L3-2(4)  The status register (the xPSR) on the Cortex-M4 processor is 32 bits wide.  The 

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described 

below).  In fact, this port only supports OS_CRITICAL_METHOD #3 because it’s the 

preferred method for µC/OS-II ports. 
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3.02.03 OS_CPU.H, Critical Sections 
 

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical sections of 

code and re-enable interrupts when done.  µC/OS-II defines two macros to disable and enable interrupts: 

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively.  µC/OS-II defines three ways to 

disable interrupts but, you only need to use one of the three methods for disabling and enabling interrupts.  
The book (MicroC/OS-II, The Real-Time Kernel) describes the three different methods.  The one to 
choose depends on the processor and compiler.  In most cases, the prefered method is 
OS_CRITICAL_METHOD #3. 

 
OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will save the 

status register of the CPU in a variable.  OS_EXIT_CRITICAL() invokes another function to restore the 

status register from the variable.  In the book, Mr. Labrosse recommends that you call the functions 
expected in OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(): OS_CPU_SR_Save() and 

OS_CPU_SR_Restore(), respectively.  The code for these two functions is declared in OS_CPU_A.S 

(described later). 
 

Listing 3-3, OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() 
 

#define  OS_CRITICAL_METHOD    3   
 
 
#define  OS_ENTER_CRITICAL()  {cpu_sr = OS_CPU_SR_Save();} 
#define  OS_EXIT_CRITICAL()   {OS_CPU_SR_Restore(cpu_sr);} 
 

Note that if your application code uses these macros, you MUST allocate a local variable called ‘cpu_sr’ 

and initialize it to 0, as shown below: 

 
    OS_CPU_SR  cpu_sr = 0; 

 
 

3.02.04 OS_CPU.H, Stack growth 
 
The stacks on the ARM Cortex-M4 grows from high memory to low memory and thus, OS_STK_GROWTH is 

set to 1 to indicate this to µC/OS-II. 

 

Listing 3-4, OS_CPU.H, Stack Growth 
 

#define  OS_STK_GROWTH        1 
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3.02.05 OS_CPU.H, Task Level Context Switch 
 

Task level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW().  Because 

context switching is processor specific, OS_TASK_SW() needs to execute an assembly language function.  

In this case, OSCtxSw() which is declared in OS_CPU_A.ASM (described later). 

 

Listing 3-5, OS_CPU.H, Task Level Context Switch 
 

#define  OS_TASK_SW()         OSCtxSw() 
 
 

3.02.06 OS_CPU.H, Function Prototypes 
 

The prototypes in Listing 3-6 are for the functions used to disable and re-enable interrupts using 
OS_CRITICAL_METHOD #3 and are described later.   

 

Listing 3-6, OS_CPU.H, Function Prototypes 
 

#if OS_CRITICAL_METHOD == 3 
OS_CPU_SR  OS_CPU_SR_Save(void); 
void       OS_CPU_SR_Restore(OS_CPU_SR cpu_sr); 
#endif 
 

 
As of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy() need to be 

placed in OS_CPU.H.  In fact, it makes sense to do this since these are all port specific files.   

 

Listing 3-7, OS_CPU.H, Function Prototypes 
 

void       OSCtxSw(void); 
void       OSIntCtxSw(void); 
void       OSStartHighRdy(void); 
 
void       OS_CPU_PendSVHandler(void); 
 
void       OS_CPU_SysTickHandler(void); 
void       OS_CPU_SysTickInit(void); 
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3.03 OS_CPU_C.C 
 

A µC/OS-II port requires that you write ten fairly simple C functions: 

 
OSInitHookBegin() 

OSInitHookEnd() 

OSTaskCreateHook() 

OSTaskDelHook() 
OSTaskIdleHook() 
OSTaskReturnHook() 
OSTaskStatHook() 

OSTaskStkInit() 

OSTaskSwHook() 

OSTCBInitHook() 

OSTimeTickHook() 

 

Typically, µC/OS-II only requires OSTaskStkInit().  The other functions allow you to extend the 

functionality of the OS with your own functions.  The functions that are highlighted will be discussed in this 
section.   
 
Note that you will also need to set the #define constant OS_CPU_HOOKS_EN  to 1 in OS_CFG.H in order 

for the compiler to use the functions declared in this file. 
 

3.03.01 OS_CPU_C.C, OSInitHookBegin() 

 
This function is called by µC/OS-II’s OSInit() at the very beginning of OSInit().  It gives the 

opportunity to add additional initialization code specific to the port.  In this case, we initialize the global 
variable (global to OS_CPU_C.C) OSTmrCtr (which is used by the OS_TMR.C module (if OS_TMR_EN is 

set to 1). 

 
Listing 3-8, OS_CPU_C.C, OSInitHookEnd() 
 
void OSInitHookBegin (void) 

{ 

#if OS_TMR_EN > 0 

    OSTmrCtr = 0; 

#endif 

} 
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3.03.02 OS_CPU_C.C, OSTaskCreateHook() 

 
This function is called by µC/OS-II’s OSTaskCreate() or OSTaskCreateExt() when a task is 

created.  OSTaskCreateHook() gives the opportunity to add code specific to the port when a task is 

created.  In our case, we call the application task create hook, App_TaskCreateHook().  

 
Note that if OS_APP_HOOKS_EN is 0, we simply tell the compiler that ptcb is not actually used (i.e. 

(void)ptcb)) and thus avoid a compiler warning. 

 
Listing 3-9, OS_CPU_C.C, OSInitHookEnd() 
 
void OSTaskCreateHook (OS_TCB *ptcb) 

{ 

#if OS_APP_HOOKS_EN > 0 

    App_TaskCreateHook(ptcb); 

#else 

    (void)ptcb; 

#endif 

} 
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3.03.03 OS_CPU_C.C, OSTaskStkInit() 

 
It is typical for ARM compilers (the Cortex-M4 also) to pass the first argument of a function into the R0 

register.  Recall that a task is declared as shown in listing 3-10.   
 

Listing 3-10, µC/OS-II Task 
 
void  MyTask (void *p_arg)  

{ 

    /* Do something with ‘p_arg’, optional */ 

    while (1) { 

        /* Task body */ 

    } 

} 

 
The code in Listing 3-11 initializes the stack frame for the task being created.  The task received an 
optional argument ‘p_arg’.  That’s why ‘p_arg’ is passed in R0 when the task is created.  The initial value 

of most of the CPU registers is not important so, we decided to initialize them to values corresponding to 
their register number.  This makes it convenient when debugging and examining stacks in RAM.  The 
initial values are thus useful when the task is first created but, of course, the register values will most likely 
change as the task code is executed. 
 

Listing 3-11, OS_CPU_C.C, OSTaskStkInit() 
 
OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt) 

{ 

    OS_STK *stk; 

 

 

    (void)opt;                       /* 'opt' is not used, prevent warning            */ 

    stk       = ptos;                /* Load stack pointer                            */ 

 

                                     /* Registers stacked as if saved on exception    */ 

    *(stk)    = (INT32U)0x01000000L; /* xPSR                                          */ 

    *(--stk)  = (INT32U)task;        /* Entry Point                                   */ 

    *(--stk)  = (INT32U)0xFFFFFFFEL; /* R14 (LR)                                      */ 

    *(--stk)  = (INT32U)0x12121212L; /* R12                                           */ 

    *(--stk)  = (INT32U)0x03030303L; /* R3                                            */ 

    *(--stk)  = (INT32U)0x02020202L; /* R2                                            */ 

    *(--stk)  = (INT32U)0x01010101L; /* R1                                            */ 

    *(--stk)  = (INT32U)p_arg;       /* R0 : argument                                 */ 

 

                                     /* Remaining registers saved on process stack    */ 

    *(--stk)  = (INT32U)0x11111111L; /* R11                                           */ 

    *(--stk)  = (INT32U)0x10101010L; /* R10                                           */ 

    *(--stk)  = (INT32U)0x09090909L; /* R9                                            */ 

    *(--stk)  = (INT32U)0x08080808L; /* R8                                            */ 

    *(--stk)  = (INT32U)0x07070707L; /* R7                                            */ 

    *(--stk)  = (INT32U)0x06060606L; /* R6                                            */ 

    *(--stk)  = (INT32U)0x05050505L; /* R5                                            */ 

    *(--stk)  = (INT32U)0x04040404L; /* R4                                            */ 

 

    return (stk); 

} 
 

 

Figure 3-2 shows how the stack frame is initialized for each task when it’s created. 
 



                                                                  µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60 

 

 17 

 
Figure 3-2, The Stack Frame for each Task for ARM Cortex-M4 port. 
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3.03.04 OS_CPU_C.C, OSTaskSwHook() 
 
OSTaskSwHook() is called when a context switch occurs.  This function allows the port code to be 

extended and do things such as measuring the execution time of a task, output a pulse on a port pin when 
a contact switch occurs, etc.  In this case, we call the application task switch hook called 
App_TaskSwHook().  

 

Listing 3-12, OS_CPU_C.C, OSTaskSwHook() 
 

void  OSTaskSwHook (void) 

{ 

#if OS_APP_HOOKS_EN > 0 

    App_TaskSwHook(); 

#endif 

} 

 

3.03.05 OS_CPU_C.C, OSTimeTickHook() 
 
OSTimeTickHook() is called at the very beginning of OSTimeTick().  This function allows the port 

code to be extended and, in our case, we call the application hook function App_TimeTickHook().   

 

OSTimeTickHook() also determines whether it’s time to update the µC/OS-II timers.  This is done by 

signaling the timer task. 
 

Listing 3-13, OS_CPU_C.C, OSTimeTickHook() 
 

void  OSTimeTickHook (void) 

{ 

#if OS_APP_HOOKS_EN > 0 

    App_TimeTickHook(); 

#endif 

 

#if OS_TMR_EN > 0 

    OSTmrCtr++; 

    if (OSTmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) { 

        OSTmrCtr = 0; 

        OSTmrSignal(); 

    } 

#endif 

} 
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3.03.06 OS_CPU_C.C, OS_CPU_SysTickInit() 
 

OS_CPU_SysTickInit() should be called by the first application task to intiailize the SysTick timer, 

which provides the µC/OS-II time tick.  OS_CPU_SysTickInit() calls OS_CPU_SysTickClkFreq(), 

which the user must provide in the BSP, to get the processor clock frequency. 
 

 

Listing 3-14, OS_CPU_C.C, OS_CPU_SysTickInit() 
 

void  OS_CPU_SysTickInit (void) 

{ 

    INT32U  cnts; 

 

 

    cnts = OS_CPU_SysTickClkFreq() / OS_TICKS_PER_SEC; 

 

    OS_CPU_CM4_NVIC_ST_RELOAD = (cnts - 1); 

                                                      /* Enable timer.           */ 

    OS_CPU_CM4_NVIC_ST_CTRL  |= OS_CPU_CM4_NVIC_ST_CTRL_CLK_SRC  

                             |  OS_CPU_CM4_NVIC_ST_CTRL_ENABLE; 

 

                                                      /* Enable timer interrupt. */ 

    OS_CPU_CM4_NVIC_ST_CTRL  |= OS_CPU_CM4_NVIC_ST_CTRL_INTEN; 

} 
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3.04 OS_CPU_A.ASM 
 

A µC/OS-II port requires that you write five fairly simple assembly language functions.  These functions 

are needed because you normally cannot save/restore registers from C functions.  The five functions are: 
 

OS_CPU_SR_Save() 
OS_CPU_SR_Restore() 
OSStartHighRdy() 
OSCtxSw() 
OSIntCtxSw() 
 

The ARM Cortex-M4 uses a clever way to perform a context switch.  This is done via a special exception 
handler which needs to be defined (it will be described later).  The handler is: 
 

OS_CPU_PendSVHandler() 

 
 

3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save() 
 
The code in listing 3-14 implements the saving of the interrupt mask register and then disabling interrupts 
to implement OS_CRITICAL_METHOD #3.  This function is invoked by the OS_ENTER_CRITICAL() 

macro.     
 
When this function returns, R0 contains the state of the PRIMASK register which contains the global 

interrupt mask prior to disabling interrupts. 
 

Listing 3-14, OS_CPU_SR_Save() 
 
 

OS_CPU_SR_Save 

        MRS     R0, PRIMASK        ; set prio int mask to mask all (except faults) 

        CPSID   I 

        BX      LR 

 

 

3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore() 
 
The code in the listing below implements the function to restore the interrupt disable mask to its original 
value prior to calling OS_ENTER_CRITICAL() (see previous section).  In other words, if interrupts were 

disabled prior to calling OS_ENTER_CRITICAL(), they would be disabled after calling 

OS_EXIT_CRITICAL(). 

 

Listing 3-15, OS_CPU_SR_Restore() 
 
OS_CPU_SR_Restore 

        MSR     PRIMASK,R0 

        BX      LR 
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3.04.03 OS_CPU_A.ASM, OSStartHighRdy() 
 
OSStartHighRdy() is called by OSStart() to start running the highest priority task that was created 

before calling OSStart().  OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest 

priority task. 
 

Listing 3-16, OSStartHighRdy() 
 
OSStartHighRdy   

 

        LDR     R0, =NVIC_SYSPRI14    ; (1) Set the PendSV exception priority 

        LDR     R1, =NVIC_PENDSV_PRI 

        STRB    R1, [R0] 

 

        MOV     R0, #0                ; (2) Set PSP to 0 for initial context switch call 

        MSR     PSP, R0 

 

                                      ; (3)Initialize the MSP to the OS_CPU_ExceptStkBase 

        LDR     R0, =OS_CPU_ExceptStkBase  

        LDR     R1, [R0] 

        MSR     MSP, R1     

 

        LDR     R0, __OS_Running      ; (4) OSRunning = TRUE 

        MOV     R1, #1 

        STRB    R1, [R0] 

 

        LDR     R0, =NVIC_INT_CTRL    ; (5) Trigger the PendSV exception 

        LDR     R1, =NVIC_PENDSVSET 

        STR     R1, [R0] 

 

        CPSIE   I                     ; (6) Enable interrupts at processor level 

 

 
L3-16(1) The ARM Cortex-M4 provides a special mechanism to perform a context switch.  

Specifically, the ARM Cortex-M4 provides a special exception handler called the PendSV 
(Pend Service call).  The PendSV is basically an interrupt mechanism that is triggered  
called by software.  It’s like a software interrupt except that the interrupt is not taken until 
interrupts are enabled.  This step sets the PendSV interrupt priority to the lowest priority.  

   
L3-16(2) Here we setup the PSP stack pointer to run the very first task but by the PendSV handler.  

This is done by setting the PSP to 0 to inform the PendSV handler to not save the context 

of the task (because there is no task to save the context for since it will be the first task to 
run).  It is assumed that OSTCBHighRdy contains the pointer to the OS_TCB of the task to 

start. 
 
L3-16(3) Here we set the main stack to OS_CPU_ExceptStkBase 
 
L3-16(4) Here we set OSRunning to TRUE to indicate that multitasking will start. 

 
L3-16(5) We are ready to trigger the PendSV handler which will be starting the first task.  The 

PendSV handler will run only when interrupts are enabled (see next step). 
 
L3-16(6) Once interrupts are enabled the ARM Cortex-M4 processor will branch to the PendSV 

handler (described later). 
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3.04.04 OS_CPU_A.ASM, OSCtxSw() 
 
When a task gives up control of the CPU, the OS_TASK_SW() macro is invoked (see OS_CPU.H) which is 

translated to a call to OSCtxSw().  Normally, OSCtxSw() performs a task level context switch but, on the 

ARM Cortex-M4, all context switching is deferred to the PendSV handler.  OSCtxSw() thus simply 

triggers the PendSV handler and returns to the caller.  The PendSV handler does not execute immediately 
because OS_TASK_SW() (and thus OSCtxSw()) is invoked with interrupts disabled.  The PendSV 

handler will only execute when interrupts are re-enabled. 
 
OS_TASK_SW() is always called from OS_Sched() (see OS_CORE.C).  The current version of 

OS_Sched() is shown in Listing 3-17. 

 

Listing 3-17, OS_Sched() 
 
void  OS_Sched (void) 

{ 

#if OS_CRITICAL_METHOD == 3 

    OS_CPU_SR  cpu_sr = 0; 

#endif 

 

 

 

    OS_ENTER_CRITICAL(); 

    if (OSIntNesting == 0) { 

        if (OSLockNesting == 0) { 

            OS_SchedNew(); 

            if (OSPrioHighRdy != OSPrioCur) { 

                OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; 

#if OS_TASK_PROFILE_EN > 0 

                OSTCBHighRdy->OSTCBCtxSwCtr++; 

#endif 

                OSCtxSwCtr++; 

                OS_TASK_SW(); 

            } 

        } 

    } 

    OS_EXIT_CRITICAL(); 

} 

 

 
 
The code for OSCtxSw() is shown in Listing 3-18.  Again, all we do here is trigger the PendSV handler.  

Note that OS_Sched() sets OSTCBHighRdy to point to the OS_TCB of the task we wish to switch to. 

 

Listing 3-18, OSCtxSw() 
 
OSCtxSw 

        LDR     R0, =NVIC_INT_CTRL      ; trigger the PendSV exception 

        LDR     R1, =NVIC_PENDSVSET 

        STR     R1, [R0] 

        BX      LR 

 

Trigger 
 the 

PendSV 
handler 

PendSV 
handler 

will run when interrupts 
are re-enabled 
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3.04.05 OS_CPU_A.ASM, OSIntCtxSw() 
 
When an ISR completes, OSIntExit() is called to determine whether a more important task than the 

interrupted task needs to execute.  If that’s the case, OSIntExit() determines which task to run next 

and calls OSIntCtxSw().  However, unlike other µC/OS-II ports where OSIntCtxSw() actually 

performs the context switch, OSIntCtxSw() for the ARM Cortex-M4 simply triggers the PendSV handler 

and returns as shown in Listing 3-19. 
 

Listing 3-19, OSIntCtxSw() 
 
OSCtxSw 

        LDR     R0, =NVIC_INT_CTRL      ; trigger the PendSV exception 

        LDR     R1, =NVIC_PENDSVSET 

        STR     R1, [R0] 

        BX      LR 

 

3.04.06 OS_CPU_A.ASM, OS_CPU_PendSVHandler() 
 

OSPendSV() is the PendSV handler which handles all context switching for µC/OS-II.  This is a 

recommended method for performing context switches with the ARM Cortex-M4.  This is because the 
ARM Cortex-M4 auto-saves half of the processor context on any exception, and restores those same 
registers upon return from exception.  The PendSV handler thus only needs to save R4-R11 and adjust 
the stack pointers.  Using the PendSV exception this way means that context saving and restoring uses 
an identical method whether it’s initiated from a task or occurs due to an interrupt or exception. 
 
Note that you must place a pointer to OS_CPU_PendSVHandler() in the exception vector table at vector 

location 14 (based of the vector table + 4 * 14 or, offset 56). 
 
 
The pseudo-code for the PendSV handler is: 
 

Listing 3-20, OS_CPU_PendSVHandler() 
 
OS_CPU_PendSVHandler: 

if (PSP != NULL) {     (1) 

Save R4-R11 onto task stack;     (2) 

OSTCBCur->OSTCBStkPtr = SP;   (3) 

} 

OSTaskSwHook();     (4) 

OSPrioCur = OSPrioHighRdy;    (5) 

OSTCBCur  = OSTCBHighRdy;    (6) 

PSP       = OSTCBHighRdy->OSTCBStkPtr;  (7) 

Restore R4-R11 from new task stack;   (8) 

Return from exception;    (9) 
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L3-20(0) Note that when OS_CPU_PendSVHandler() is started by the CPU, the CPU 

automatically saves the xPSR, PC, LR, R12 and R0-R3 registers onto the task stack.  

After saving half the CPU registers onto the task’s stack, the CPU switches stack pointer 
to use the MSP. 

   
L3-20(1) Here we check to see if this is the PSP stack pointer is set to NULL or not.  Recall that 

OSStartHighRdy() sets PSP to NULL to avoid saving the task’s context when we start 

the first task. 
 
L3-20(2) If OS_CPU_PendSVHandler() is actually triggered to perform a full task switch then we 

simply save the remaining registers (R4-R11) on the task’s stack and not the ISR stack. 
 
L3-20(3) Once the context of the task being switched out is saved, we simply save the task stack 

pointer (PSP) into that task’s OS_TCB. 

 

L3-20(4) We then call the µC/OS-II context switch hook (see OS_CPU_C.C). 

 

L3-20(5) As with all µC/OS-II ports, we need to copy the new high priority into the current priority. 

 
L3-20(6) Similarly, we need to copy OSTCBHighRdy into OSTCBCur. 

 
L3-20(7) We then retrieve the current top-of-stack pointer of the task we now want to switch to.  

Recall that the top-of-stack pointer is saved in OSTCBHighRdy->OSTCBStkPtr.  

µC/OS-II always places .OSTCBStkPtr at the beginning of the OS_TCB , so there is no 

need to find the offset of the SP, since it is always at offset 0. 
 
L3-20(8) We restore the context of the task to execute (i.e. its register values) from the task’s stack 

frame. 
 
L3-20(9) We then perform a return from exception which causes the ARM Cortex-M4 to restore 

R3-R0, R12, LR, PC and xPSR registers from the task’s stack frame.  At this point, we are 

running the new task. 
 
 
The actual code for the OS_CPU_PendSVHandler() handler is shown in Listing 3-21.  Note that the 

reference numbers in the comments correspond to the same elements in the pseudo-code of Listing 3-20. 
 
Figure 3-3 shows the context switch graphically (again with the corresponding references). 
 
You should note that interrupts are disabled at the beginning of the PendSV handler to ensure that the 
context switch is performed atomically.  If an interrupt occurs while we perform the context switch, it will be 
serviced once the new task is restored. 
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Listing 3-21, OSPendSV() 
 
OS_CPU_PendSVHandler                    ; (0) CPU saved xPSR, PC, LR, R12, R0-R3 

        CPSID   I                       ;     Prevent interruption during context switch 

        MRS     R0, PSP                 ; (1) PSP is process stack pointer 

        CBZ     R0, OSPendSV_nosave     ;     Skip register save the first time 

 

        SUB     R0, R0, #0x20           ; (2) Save remaining regs r4-11 on process stack 

        STM     R0, {R4-R11} 

 

        LDR     R1, __OS_TCBCur         ; (3) OSTCBCur->OSTCBStkPtr = SP; 

        LDR     R1, [R1] 

        STR     R0, [R1]                ;     R0 is SP of process being switched out 

 

OSPendSV_nosave 

        PUSH    {R14}                   ; (4) OSTaskSwHook(); 

        LDR     R0, __OS_TaskSwHook       

        BLX     R0 

        POP     {R14} 

 

        LDR     R0, __OS_PrioCur        ; (5) OSPrioCur = OSPrioHighRdy 

        LDR     R1, __OS_PrioHighRdy 

        LDRB    R2, [R1] 

        STRB    R2, [R0] 

 

        LDR     R0, __OS_TCBCur         ; (6) OSTCBCur  = OSTCBHighRdy; 

        LDR     R1, __OS_TCBHighRdy 

        LDR     R2, [R1] 

        STR     R2, [R0] 

 

        LDR     R0, [R2]                ; (7) R0 is new task SP 

                                 ;     SP = OSTCBHighRdy->OSTCBStkPtr; 

 

        LDM     R0, {R4-R11}            ; (8) Restore R4-R11 from new task stack 

        ADD     R0, R0, #0x20 

        MSR     PSP, R0                 ;     Load PSP with new task SP 

        ORR     LR, LR, #0x04           ;     Ensure exception return uses process stack 

        CPSIE   I 

        BX      LR                      ; (9) Exception return 
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Figure 3-3, ARM Cortex-M4 Context Switch. 
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3.05 OS_DBG.C 
 

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information 

about µC/OS-II and its configuration.  Specifically, OS_DBG.C contains a number of constants that are 

placed in ROM (code space) which the debugger can read and display.  Because you may not be using a 
debugger that needs that file, you may omit it in your build.   
 
For IAR’s C-Spy debugger, Micriµm has introduced a Windows-based ‘Plug-In’ module that makes use of 
this file and thus needs to be included if you use C-Spy. 
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4.00 Exception Vector Table 
 
The ARM Cortex-M4 contains an exception vector table (also called the interrupt vector table) starting at 
address 0x00000000.  The table can contain up to 256 entries (can be up to 1 Kbytes since each entry is 

a 32-bit pointer).  Each entry in the table is a pointer to the corresponding exception or interrupt handler. 
 
The exception vector table for the ARM Cortex-M4 is shown in table 4-1: 
 

Position Exception / Interrupt Priority Vector Address 
0  - 0x00000000 

1 Reset -3 (highest) 0x00000004 

2 Non-maskable Interrupt -2 0x00000008 

3 Hard Fault -1 0x0000000C 

4 Memory Management settable 0x00000010 

5 Bus Fault Settable 0x00000014 

6 Usage Fault Settable 0x00000018 

7 Reserved - 0x0000001C 

8 Reserved - 0x00000020 

9 Reserved - 0x00000024 

10 Reserved - 0x00000028 

11 SVCall Settable 0x0000002C 

12 Debug Monitor Settable 0x00000030 

13 Reserved - 0x00000034 

14 PendSV Settable 0x00000038 

15 SysTick Settable 0x0000003C 

16 INTSIR[239] Settable 0x00000040 

17 INTISR[238] Settable 0x00000044 

: : Settable : 

: : Settable : 

255 INTISR[0] Settable 0x000003FC 

 

Table 4-1, ARM Cortex-M4 Exception Vector Table 
 

µC/OS-II uses the PendSV handler for context switching and the SysTick handler to process system 

ticks (i.e. clock ticks).  The PendSV handler disables interrupts so that it can execute atomically. 
 
The ARM Cortex-M4 has a built-in timer which was designed specifically for RTOS use.  The timer can be 
configured to run at just about any tick rate.  The application’s BSP should set this timer to 
OS_TICKS_PER_SEC.  

 
Note that it’s up to the application code to setup the Exception Vector Table.  To help you with this task, 
we created a file called APP_VECT.C that you can edit for each project. 
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4.01 Exception / Interrupt Handling Sequence 
 
When the CPU invokes an exception or interrupt handler, the CPU automatically pushes the xPSR, PC, 
LR, R12 and R0-R3 registers onto the SP_process stack. 
 
The CPU then reads the vector table to extract the address of the exception/interrupt handler and updates 

the PC with this address.  The CPU builds the exception stack frame which includes the old PC.  The LR 

actually gets a special value that looks something like 0xFFFFFFF9.  This means it is in handler mode, 

and when CM-3 sees this value attempt to load into the PC (as in BX LR), it recognizes that as an 

exception return and gets the PC from the registers saved when the exception was entered.  The CPU 

then switches to use the SP_main stack pointer. 

 
 

4.02 Interrupt Controllers 
 
The ARM Cortex-M4 also comes with an integrated Nestable Vectored Interrupt Controller (NVIC).   
 
   

4.03 Interrupt Service Routines 
 

Interrupt Service Routines (ISRs) that need to use µC/OS-II services should be written as shown in 

Listing 4-1 for the ARM Cortex-M4.   
 

Listing 4-1, Interrupt Service Routines using µC/OS-II services. 
 
void OS_CPU_IRQ_ISR_Handler (void) 

{ 

    OS_CPU_SR  cpu_sr = 0; 

 

 

    OS_ENTER_CRITICAL();    /* Tell uC/OS-II that we are starting an ISR          */ 

    OSIntNesting++; 

    OS_EXIT_CRITICAL(); 

 

    /* Handle the Interrupt … don’t forget to clear the interrupt source          */ 

 

    OSIntExit();            /* Tell uC/OS-II that we are leaving the ISR          */ 

} 

 

You should note that you MUST disable interrupts in order to increment OSIntNesting to ensure that 

the operation is performed atomically.    We do this by calling the OS_ENTER_CRITICAL() and 

OS_EXIT_CRITICAL() macros. 

 
 
It’s possible that some ISRs don’t need to signal a task.  In those cases, your ISRs would not need to 
increment OSIntNesting and call OSIntExit(). 

 



  µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60 

   

30 

 5.00 Application Code 
 

Your application code can make use of the port presented in this application note as described in this 

section.  Figure 5-1 shows a block diagram of the relationship between your application, µC/OS-II, the 

µC/OS-II port, the BSP (Board Support Package), the ARM Cortex-M4 CPU and the target hardware. 

 
 

 
 

Figure 5-1, Relationship between modules. 
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5.01 APP.C, APP.H and APP_CFG.H 
 

For sake of discussion, your application is placed in files called APP.C, APP.H and APP_CFG.H.  Of 

course, your application (i.e. product) can contain many more files.   
 
APP.C would be where you would place main() but, of course, you can place main() anywhere you 

want.   
 
APP_VECT.C  contains the exception / interrupt vector table for the application.  You can edit this file to 

add your own interrupt handlers (or at least pointers to them).  At vector 14, the vector table needs to point 
to OS_CPU_PendSVHandler() (see OS_CPU_A.ASM) and at vector 15, the vector table need to point to 

OS_CPU_SysTickHandler() (see BSP.C). 

 
APP_CFG.H contains #define constants to configure the application.  We placed task stack sizes task 

priorities and other #defines in this file.  This allows you to find task priorities and sizes in one place. 
 

APP.C is a standard test file for µC/OS-II examples.  The two important functions are main() (listing 5-

1) and AppStartTask() (listing 5-2). 

 

Listing 6-1, main() 
 
void main (void) 

{ 

#if (OS_TASK_NAME_EN > 0) 

    CPU_INT08U  err; 

#endif     

 

#if (CPU_CFG_NAME_EN == DEF_ENABLED) 

    CPU_ERR     cpu_err; 

#endif 

     

    CPU_Init();                                                       (1) 

     

    Mem_Init();                                                       (2)  

    Math_Init();                                                      (3) 

     

#if (CPU_CFG_NAME_EN == DEF_ENABLED) 

    CPU_NameSet((CPU_CHAR *)"TMPM364FD", 

                (CPU_ERR  *)&cpu_err); 

#endif 

 

    BSP_IntDisAll();                                                  (4) 

 

    OSInit();                                                         (5) 

 

    OSTaskCreateExt(AppStartTask,                                     (6) 

                    (void *)0,  

                    (OS_STK *)&AppStartTaskStk[APP_TASK_START_STK_SIZE-1],  

                    APP_TASK_START_PRIO,  

                    APP_TASK_START_PRIO, 

                    (OS_STK *)&AppStartTaskStk[0], 

                    APP_TASK_START_STK_SIZE, 

                    (void *)0, 

                    OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR); 

 

#if (OS_TASK_NAME_EN > 0) 

    OSTaskNameSet(APP_CFG_TASK_START_PRIO, "Start", &err);            (7) 

#endif 

 

    OSStart();                                                        (8) 
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    return (1); 

} 

 
L5-1(1)  Initialize the CPU module which initializes CPU timestamps, CPU interrupt disable time 

measurements and the CPU host name. 
 
L5-1(2)  Initialize the Memory Management Module. 
 
L5-1(3)  Initialize the Mathematic Module. 
 
L5-1(4)  We need to disable interrupts to ensure we do not get interrupted until we complete the 

initialization sequence. 
 

L5-1(5)  As with all µC/OS-II based applications, you need to initialize µC/OS-II by calling 

OSInit(). 

 
L5-1(6)  You need to create at least one task.  In this case, we created the task using the extended 

task create call.  This allow µC/OS-II to have more information about your task.  Specifically, 

with the IAR toolchain, the extra information allows the C-Spy debugger to display stack 

usage information when you use the µC/OS-II Kernel Awareness Plug-In. 

 
L5-1(7)  We can now give names to tasks and those can be displayed by Kernel Aware debuggers 

such as IAR’s C-Spy. 
 
L5-1(8)  In order to start multitasking, you need to call OSStart().  Note that OSStart() will not 

return from this call. 
 
 
 

Listing 5-2, AppStartTask() 
 
static  void  AppStartTask (void *p_arg) 

{ 

    CPU_INT32U  cpu_clk_freq; 

    CPU_INT32U  cnts; 

   (void)p_arg; 

 

    BSP_Init();                                                   (1) 

    

    cpu_clk_freq = BSP_CPU_ClkFreq();                                                                          

    cnts         = cpu_clk_freq / (CPU_INT32U)OS_TICKS_PER_SEC;  

    OS_CPU_SysTickInit(cnts);                                     (2) 

 

#if OS_TASK_STAT_EN > 0 

    OSStatInit();                                                 (3) 

#endif 

 

    APP_TRACE_INFO(("Creating Application Events...\n\r"));       (4)  

    App_EventCreate();                                           

 

    APP_TRACE_INFO(("Creating Application Tasks...\n\r"));        (5)  

    App_TaskCreate();                                            

 

    while (TRUE) { 

        APP_TRACE_INFO(("Hello World from Start Task\n\r"));      (6)    

        OSTimeDlyHMSM(0, 0, 1, 0);                                (7) 

    } 

} 
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L5-2(1)  If you decided to implement a BSP (see section 6, Board Support Package) for your target 
board, you would initialize it here. 

 

L5-2(1)  You should now initialize the SysTick, which will provided the µC/OS-II time tick. 

 
L5-2(3)  If you enabled the statistic task by setting OS_TASK_STAT_EN in OS_CFG.H to 1) then, you 

need to call it here.  Please note that you need to make sure that you initialized and enabled 

the µC/OS-II clock tick because OSStatInit() assumes the presence of clock ticks.  In 

other words, if the tick ISR is not active when you call OSStatInit(), your application will 

end up in µC/OS-II’s idle task and not be able to run any other tasks. 

 
L5-2(4)  At this point, you can create additional events.  We decided to place all our task initialization in 

one function called App_EventCreate() but, you are certainly welcome to use a different 

technique. 
 
L5-2(5)  At this point, you can create additional tasks.  We decided to place all our task initialization in 

one function called App_TaskCreate() but, you are certainly welcome to use a different 

technique. 
 
L5-2(6)  You can now perform whatever additional function you want for this task. The example 

outputs “Hello World from Start Task” 
 
L5-2(7)  We decided to toggle the message every second. 
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5.02 INCLUDES.H 
 

INCLUDES.H is a master include file and is found at the top of all .C files.  INCLUDES.H allows every .C 

file in your project to be written without concern about which header file is actually needed. The only 
drawbacks to having a master include file are that INCLUDES.H may include header files that are not 

pertinent to the actual .C file being compiled and the compilation process may take longer. These 
inconveniences are offset by code portability.  You can edit INCLUDES.H to add your own header files, but 

your header files should be added at the end of the list.   
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6.00 BSP (Board Support Package) 
 

It is often convenient to create a Board Support Package (BSP) for your target hardware.  A BSP could 
allow you to encapsulate the following functionality: 
 
 Timer initialization 
 ISR Handlers 
 LED control functions 
 Reading switches 
 Setting up the interrupt controller 
 Setting up communication channels 
 Etc. 
 
A Micriµm BSP consist of at least 2 files: BSP.C and BSP.H. 

 
Each BSP should contain a BSP initialization function.  We called ours BSP_Init() and should be called 

by your application code. 
 
 

6.01 BSP (Board Support Package) – LED Management 
 

A number of evaluation boards are equipped with LEDs, we decided to create LED control functions as 
follows: 
 
 void  BSP_LED_On(CPU_INT08U  led_id); 
 void  BSP_LED_Off(CPU_INT08U led_id); 
 void  BSP_LED_Toggle(CPU_INT08U led_id); 

 
In this case, LEDs are referenced ‘logically’ instead of physically.  When you write the BSP, you determine 
which LED is LED #1, which is LED #2, etc.  When you want to turn on LED #1, you simply call 
BSP_LED_On(1).  If you want to toggle LED #2, you simply call BSP_LED_Toggle(2).  In fact, you can 

(and should) associate names to your LEDs using #defines.  You could thus specify 

BSP_LED_Off(LED_PM). 
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7.00 Conclusion 
 
This application note presented a ‘generic’ port ARM Cortex-M4 processors.  The port should be easily 

adapted to different compilers (the code itself should be identical).  Of course, if you use µC/OS-II and 

use the port on actual hardware, you will need to initialize and properly handle hardware interrupts. 
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 Licensing 
 

If you intend to use µC/OS-II in a commercial product, remember that you need to contact Micriµm to 

properly license its use in your product.  The use of µC/OS-II in commercial applications is NOT-FREE.  

Your honesty is greatly appreciated.  
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