
MicriµmMicriµmMicriµmMicriµm
© Copyright 2011, Micriµm

All Rights reserved

µC/OS-II
and

ARM Cortex-M4 Processor
with the

Kinetis K60

Application Note
Kinetis K60_OSII

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

2

HTUwww.Micrium.comUTH

Table of Contents

1.00 Introduction... 4

2.00 The ARM Cortex-M4 programmer’s model... 6

3.00 µC/OS-II Port for the ARM Cortex-M4 processors...................................... 9

3.01 Directories and Files... 10

3.02 OS_CPU.H ... 11

3.02.01 OS_CPU.H, macros for ‘externals’ ... 11

3.02.02 OS_CPU.H, Data Types... 11

3.02.03 OS_CPU.H, Critical Sections ... 12

3.02.04 OS_CPU.H, Stack growth .. 12

3.02.05 OS_CPU.H, Task Level Context Switch... 13

3.02.06 OS_CPU.H, Function Prototypes ... 13

3.03 OS_CPU_C.C .. 14

3.03.01 OS_CPU_C.C, OSInitHookBegin()... 14

3.03.02 OS_CPU_C.C, OSTaskCreateHook() .. 15

3.03.03 OS_CPU_C.C, OSTaskStkInit() ... 16

3.03.04 OS_CPU_C.C, OSTaskSwHook().. 18

3.03.05 OS_CPU_C.C, OSTimeTickHook() .. 18

3.03.06 OS_CPU_C.C, OS_CPU_SysTickInit() .. 19

3.04 OS_CPU_A.ASM ... 20

3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save() ... 20

3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore() ... 20

3.04.03 OS_CPU_A.ASM, OSStartHighRdy()... 21

3.04.04 OS_CPU_A.ASM, OSCtxSw().. 22

3.04.05 OS_CPU_A.ASM, OSIntCtxSw().. 23

3.04.06 OS_CPU_A.ASM, OS_CPU_PendSVHandler()... 23

3.05 OS_DBG.C... 27

4.00 Exception Vector Table .. 28

4.01 Exception / Interrupt Handling Sequence... 29

4.02 Interrupt Controllers.. 29

4.03 Interrupt Service Routines.. 29

5.00 Application Code .. 30

5.01 APP.C, APP.H and APP_CFG.H.. 31
5.02 INCLUDES.H.. 34

6.00 BSP (Board Support Package)... 35

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 3

6.01 BSP (Board Support Package) – LED Management.................................. 35

7.00 Conclusion.. 36

Licensing ... 37

References ... 37

Contacts ... 37

Notes ... 38

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

4

1.00 Introduction

ARM has been working on a new architecture called the Cortex for a number of years. During

development, µC/OS-II was used to validate some of the design aspects and was used as a source of

ideas to create new capabilities to support RTOSs. In other words, µC/OS-II was the first RTOS ported

to the Cortex.

This application note describes the ‘official’ Micrium port for µC/OS-II on the Cortex-M4 processor.

Figure 1-1 shows a block diagram showing the relationship between your application, µC/OS-II, the port

code and the BSP (Board Support Package). Relevant sections of this application note are referenced on
the figure.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 5

Figure 1-1, Relationship between modules.

µC/OS-II
OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C

OS_MUTEX.C
OS_Q.C

OS_SEM.C
OS_TASK.C
OS_TIME.C
OS_TMR.C
uCOS_II.H

µC/OS-II

Cortex M4 Port
OS_CPU_C.C

OS_CPU_A.ASM
OS_CPU.H
OS_DBG.C

Your Application
APP.C

APP_VECT.C
APP_CFG.H
INCLUDES.H
OS_CFG.H

ARM Cortex-M4 / Target Board

BSP
BSP.C
BSP.H

Section 2

Section 3 Section 6

Section 5

µC/OS-II

Book

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

6

2.00 The ARM Cortex-M4 programmer’s model

The visible registers in an ARM Cortex-M4 processor are shown in Figure 2-1. The ARM Cortex-M4 has a
total of 20 registers. Each register is 32 bits wide.

R0-R12 R0 through R12 are general purpose registers that can be used to hold data as well as

pointers.

R13 Is generally designated as the stack pointer (also called the SP) but could be the recipient

of arithmetic operations. There are actually two stack pointers (SP_process and

SP_main) but only one is visible at any given time. SP_process is used for task level

code and SP_main is used for exception processing.

R14 Is called the Link Register (LR) and is used to store the contents of the PC when a Branch

and Link (BL) instruction is executed. The LR allows you to return to the caller.

R15 Is dedicated to be used as the Program Counter (PC) and points to the current instruction

being executed. As instructions are executed, the PC is incremented by either 2 or 4

depending on the instruction.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 7

Figure 2-1, ARM Cortex-M4 Register Model.

xPSR There are three separate registers to hold the sate of the CPU: APSR, IPSR and EPSR.

The APSR contains application status such as shown in Figure 2-2.

Figure 2-2, The APSR Register.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP_process)

R14

R15

R13 (SP_main)

APSR

IPSR

EPSR

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

8

N
Bit 31 is the ‘negative’ bit and is set when the last ALU operation produced a negative
result (i.e. the top bit of a 32-bit result was a one).

 Z
Bit 30 is the ‘zero’ bit and is set when the last ALU operation produced a zero result (every
bit of the 32-bit result was zero).

C
Bit 29 is the ‘carry’ bit and is set when the last ALU operation generated a carry-out, either
as a result of an arithmetic operation in the ALU or from the shifter.

V
Bit 28 is the ‘overflow’ bit and is set when the last arithmetic ALU operation generated an
overflow into the sign bit.

Q
Bit 27 is the sticky saturation flag.

 The Interrupt PSR (IPSR) contains the ISR number of the current exception activation

and is shown in Figure 2-3.

Figure 2-3, The IPSR Register.

 The Execution PSR (EPSR) contains two overlapping fields:

 • the Interruptible-Continuable Instruction (ICI) field for interrupted load multiple and store

multiple instructions

 • the execution state field for the If-Then (IT) instruction, and the T-bit (Thumb state bit).

Figure 2-4, The EPSR Register.

 On entering an exception, the processor saves the combined information from the three

status registers (referred to as xPSR) onto the stack.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 9

3.00 µC/OS-II Port for the ARM Cortex-M4 processors

We used the IAR EWARM V6.10 (Embedded Workbench for the ARM) to test the port. The EWARM
contains an editor, a C/EC++ compiler, an assembler, a linker/locator and the C-Spy debugger. The
C-Spy debugger actually contains an ARM Cortex-M4 simulator which allows you to test code prior to run
it on actual hardware. We tested the ARM Cortex-M4 port on a Freescale TWR-K60N512 development
board as shown in Figure 3-1.

Figure 3-1, Freescale TWR-K60N512 Development Kit (Kinetis K60 chip)

You can adapt the port provided in this application note to other ARM Cortex-M4 based compilers. The
instructions (i.e. the code) should be identical and all you have to do is adapt the port to your compiler
specifics. We will describe some of these when we cover the contents of the different files.

The port assumes that you are using µC/OS-II V2.92 or higher.

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

10

3.01 Directories and Files

The software that accompanies this application note is assumed to be placed in the following directory:

 \Micrium\Software\uCOS-II\ARM-Cortex-M4\Generic\IAR

Like all µC/OS-II ports, the source code for the port is found in the following files:

 OS_CPU.H
 OS_CPU_C.C
 OS_CPU_A.ASM
 OS_DBG.C

Test code and configuration files are found in their appropriate directories and are described later.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 11

3.02 OS_CPU.H

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and

typedefs.

3.02.01 OS_CPU.H, macros for ‘externals’

OS_CPU_GLOBALS and OS_CPU_EXT allows us to declare global variables that are specific to this port

(described later).

Listing 3-1, OS_CPU.H, Globals and Externs

#ifdef OS_CPU_GLOBALS
#define OS_CPU_EXT
#else
#define OS_CPU_EXT extern
#endif

3.02.02 OS_CPU.H, Data Types

Listing 3-2, OS_CPU.H, Data Types

typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned short INT16U; // (1)
typedef signed short INT16S;
typedef unsigned int INT32U;
typedef signed int INT32S;
typedef float FP32; // (2)
typedef double FP64;

typedef unsigned int OS_STK; // (3)
typedef unsigned int OS_CPU_SR; // (4)

L3-2(1) If you were to consult the IAR compiler documentation, you would find that an short is

16 bits and an int is 32 bits. Most Cortex-M4 compilers should have the same

definitions.

L3-2(2) Floating-point data types are included even though µC/OS-II doesn’t make use of

floating-point numbers.

L3-2(3) A stack entry for the Cortex-M4 processor is always 32 bits wide; thus, OS_STK is

declared accordingly. All task stacks must be declared using OS_STK as its data type.

L3-2(4) The status register (the xPSR) on the Cortex-M4 processor is 32 bits wide. The

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described

below). In fact, this port only supports OS_CRITICAL_METHOD #3 because it’s the

preferred method for µC/OS-II ports.

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

12

3.02.03 OS_CPU.H, Critical Sections

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical sections of

code and re-enable interrupts when done. µC/OS-II defines two macros to disable and enable interrupts:

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. µC/OS-II defines three ways to

disable interrupts but, you only need to use one of the three methods for disabling and enabling interrupts.
The book (MicroC/OS-II, The Real-Time Kernel) describes the three different methods. The one to
choose depends on the processor and compiler. In most cases, the prefered method is
OS_CRITICAL_METHOD #3.

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will save the

status register of the CPU in a variable. OS_EXIT_CRITICAL() invokes another function to restore the

status register from the variable. In the book, Mr. Labrosse recommends that you call the functions
expected in OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(): OS_CPU_SR_Save() and

OS_CPU_SR_Restore(), respectively. The code for these two functions is declared in OS_CPU_A.S

(described later).

Listing 3-3, OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 3

#define OS_ENTER_CRITICAL() {cpu_sr = OS_CPU_SR_Save();}
#define OS_EXIT_CRITICAL() {OS_CPU_SR_Restore(cpu_sr);}

Note that if your application code uses these macros, you MUST allocate a local variable called ‘cpu_sr’

and initialize it to 0, as shown below:

 OS_CPU_SR cpu_sr = 0;

3.02.04 OS_CPU.H, Stack growth

The stacks on the ARM Cortex-M4 grows from high memory to low memory and thus, OS_STK_GROWTH is

set to 1 to indicate this to µC/OS-II.

Listing 3-4, OS_CPU.H, Stack Growth

#define OS_STK_GROWTH 1

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 13

3.02.05 OS_CPU.H, Task Level Context Switch

Task level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW(). Because

context switching is processor specific, OS_TASK_SW() needs to execute an assembly language function.

In this case, OSCtxSw() which is declared in OS_CPU_A.ASM (described later).

Listing 3-5, OS_CPU.H, Task Level Context Switch

#define OS_TASK_SW() OSCtxSw()

3.02.06 OS_CPU.H, Function Prototypes

The prototypes in Listing 3-6 are for the functions used to disable and re-enable interrupts using
OS_CRITICAL_METHOD #3 and are described later.

Listing 3-6, OS_CPU.H, Function Prototypes

#if OS_CRITICAL_METHOD == 3
OS_CPU_SR OS_CPU_SR_Save(void);
void OS_CPU_SR_Restore(OS_CPU_SR cpu_sr);
#endif

As of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy() need to be

placed in OS_CPU.H. In fact, it makes sense to do this since these are all port specific files.

Listing 3-7, OS_CPU.H, Function Prototypes

void OSCtxSw(void);
void OSIntCtxSw(void);
void OSStartHighRdy(void);

void OS_CPU_PendSVHandler(void);

void OS_CPU_SysTickHandler(void);
void OS_CPU_SysTickInit(void);

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

14

3.03 OS_CPU_C.C

A µC/OS-II port requires that you write ten fairly simple C functions:

OSInitHookBegin()

OSInitHookEnd()

OSTaskCreateHook()

OSTaskDelHook()
OSTaskIdleHook()
OSTaskReturnHook()
OSTaskStatHook()

OSTaskStkInit()

OSTaskSwHook()

OSTCBInitHook()

OSTimeTickHook()

Typically, µC/OS-II only requires OSTaskStkInit(). The other functions allow you to extend the

functionality of the OS with your own functions. The functions that are highlighted will be discussed in this
section.

Note that you will also need to set the #define constant OS_CPU_HOOKS_EN to 1 in OS_CFG.H in order

for the compiler to use the functions declared in this file.

3.03.01 OS_CPU_C.C, OSInitHookBegin()

This function is called by µC/OS-II’s OSInit() at the very beginning of OSInit(). It gives the

opportunity to add additional initialization code specific to the port. In this case, we initialize the global
variable (global to OS_CPU_C.C) OSTmrCtr (which is used by the OS_TMR.C module (if OS_TMR_EN is

set to 1).

Listing 3-8, OS_CPU_C.C, OSInitHookEnd()

void OSInitHookBegin (void)

{

#if OS_TMR_EN > 0

 OSTmrCtr = 0;

#endif

}

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 15

3.03.02 OS_CPU_C.C, OSTaskCreateHook()

This function is called by µC/OS-II’s OSTaskCreate() or OSTaskCreateExt() when a task is

created. OSTaskCreateHook() gives the opportunity to add code specific to the port when a task is

created. In our case, we call the application task create hook, App_TaskCreateHook().

Note that if OS_APP_HOOKS_EN is 0, we simply tell the compiler that ptcb is not actually used (i.e.

(void)ptcb)) and thus avoid a compiler warning.

Listing 3-9, OS_CPU_C.C, OSInitHookEnd()

void OSTaskCreateHook (OS_TCB *ptcb)

{

#if OS_APP_HOOKS_EN > 0

 App_TaskCreateHook(ptcb);

#else

 (void)ptcb;

#endif

}

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

16

3.03.03 OS_CPU_C.C, OSTaskStkInit()

It is typical for ARM compilers (the Cortex-M4 also) to pass the first argument of a function into the R0

register. Recall that a task is declared as shown in listing 3-10.

Listing 3-10, µC/OS-II Task

void MyTask (void *p_arg)

{

 /* Do something with ‘p_arg’, optional */

 while (1) {

 /* Task body */

 }

}

The code in Listing 3-11 initializes the stack frame for the task being created. The task received an
optional argument ‘p_arg’. That’s why ‘p_arg’ is passed in R0 when the task is created. The initial value

of most of the CPU registers is not important so, we decided to initialize them to values corresponding to
their register number. This makes it convenient when debugging and examining stacks in RAM. The
initial values are thus useful when the task is first created but, of course, the register values will most likely
change as the task code is executed.

Listing 3-11, OS_CPU_C.C, OSTaskStkInit()

OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt)

{

 OS_STK *stk;

 (void)opt; /* 'opt' is not used, prevent warning */

 stk = ptos; /* Load stack pointer */

 /* Registers stacked as if saved on exception */

 (stk) = (INT32U)0x01000000L; / xPSR */

 (--stk) = (INT32U)task; / Entry Point */

 (--stk) = (INT32U)0xFFFFFFFEL; / R14 (LR) */

 (--stk) = (INT32U)0x12121212L; / R12 */

 (--stk) = (INT32U)0x03030303L; / R3 */

 (--stk) = (INT32U)0x02020202L; / R2 */

 (--stk) = (INT32U)0x01010101L; / R1 */

 (--stk) = (INT32U)p_arg; / R0 : argument */

 /* Remaining registers saved on process stack */

 (--stk) = (INT32U)0x11111111L; / R11 */

 (--stk) = (INT32U)0x10101010L; / R10 */

 (--stk) = (INT32U)0x09090909L; / R9 */

 (--stk) = (INT32U)0x08080808L; / R8 */

 (--stk) = (INT32U)0x07070707L; / R7 */

 (--stk) = (INT32U)0x06060606L; / R6 */

 (--stk) = (INT32U)0x05050505L; / R5 */

 (--stk) = (INT32U)0x04040404L; / R4 */

 return (stk);

}

Figure 3-2 shows how the stack frame is initialized for each task when it’s created.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 17

Figure 3-2, The Stack Frame for each Task for ARM Cortex-M4 port.

When the task is created, the final value of stk is placed in the OS_TCB of that task by the µC/OS-II

function that calls OSTaskStkInit() (i.e. OSTaskCreate() or OSTaskCreateExt()). The ordering

of the registers is important since it matches the way ARM Cortex-M4 stacks them on exception.

xPSR = 0x01000000

stk

ptos

Low Memory

High Memory

PC = task

LR = 0xFFFFFFFF

R12 = 0x12121212

R3 = 0x03030303

R2 = 0x02020202

R1 = 0x01010101

R0 = p_arg

R11 = 0x11111111

R10 = 0x10101010

R9 = 0x09090909

R8 = 0x08080808

R7 = 0x07070707

R6 = 0x06060606

R5 = 0x05050505

R4 = 0x04040404

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

18

3.03.04 OS_CPU_C.C, OSTaskSwHook()

OSTaskSwHook() is called when a context switch occurs. This function allows the port code to be

extended and do things such as measuring the execution time of a task, output a pulse on a port pin when
a contact switch occurs, etc. In this case, we call the application task switch hook called
App_TaskSwHook().

Listing 3-12, OS_CPU_C.C, OSTaskSwHook()

void OSTaskSwHook (void)

{

#if OS_APP_HOOKS_EN > 0

 App_TaskSwHook();

#endif

}

3.03.05 OS_CPU_C.C, OSTimeTickHook()

OSTimeTickHook() is called at the very beginning of OSTimeTick(). This function allows the port

code to be extended and, in our case, we call the application hook function App_TimeTickHook().

OSTimeTickHook() also determines whether it’s time to update the µC/OS-II timers. This is done by

signaling the timer task.

Listing 3-13, OS_CPU_C.C, OSTimeTickHook()

void OSTimeTickHook (void)

{

#if OS_APP_HOOKS_EN > 0

 App_TimeTickHook();

#endif

#if OS_TMR_EN > 0

 OSTmrCtr++;

 if (OSTmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {

 OSTmrCtr = 0;

 OSTmrSignal();

 }

#endif

}

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 19

3.03.06 OS_CPU_C.C, OS_CPU_SysTickInit()

OS_CPU_SysTickInit() should be called by the first application task to intiailize the SysTick timer,

which provides the µC/OS-II time tick. OS_CPU_SysTickInit() calls OS_CPU_SysTickClkFreq(),

which the user must provide in the BSP, to get the processor clock frequency.

Listing 3-14, OS_CPU_C.C, OS_CPU_SysTickInit()

void OS_CPU_SysTickInit (void)

{

 INT32U cnts;

 cnts = OS_CPU_SysTickClkFreq() / OS_TICKS_PER_SEC;

 OS_CPU_CM4_NVIC_ST_RELOAD = (cnts - 1);

 /* Enable timer. */

 OS_CPU_CM4_NVIC_ST_CTRL |= OS_CPU_CM4_NVIC_ST_CTRL_CLK_SRC

 | OS_CPU_CM4_NVIC_ST_CTRL_ENABLE;

 /* Enable timer interrupt. */

 OS_CPU_CM4_NVIC_ST_CTRL |= OS_CPU_CM4_NVIC_ST_CTRL_INTEN;

}

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

20

3.04 OS_CPU_A.ASM

A µC/OS-II port requires that you write five fairly simple assembly language functions. These functions

are needed because you normally cannot save/restore registers from C functions. The five functions are:

OS_CPU_SR_Save()
OS_CPU_SR_Restore()
OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()

The ARM Cortex-M4 uses a clever way to perform a context switch. This is done via a special exception
handler which needs to be defined (it will be described later). The handler is:

OS_CPU_PendSVHandler()

3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save()

The code in listing 3-14 implements the saving of the interrupt mask register and then disabling interrupts
to implement OS_CRITICAL_METHOD #3. This function is invoked by the OS_ENTER_CRITICAL()

macro.

When this function returns, R0 contains the state of the PRIMASK register which contains the global

interrupt mask prior to disabling interrupts.

Listing 3-14, OS_CPU_SR_Save()

OS_CPU_SR_Save

 MRS R0, PRIMASK ; set prio int mask to mask all (except faults)

 CPSID I

 BX LR

3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore()

The code in the listing below implements the function to restore the interrupt disable mask to its original
value prior to calling OS_ENTER_CRITICAL() (see previous section). In other words, if interrupts were

disabled prior to calling OS_ENTER_CRITICAL(), they would be disabled after calling

OS_EXIT_CRITICAL().

Listing 3-15, OS_CPU_SR_Restore()

OS_CPU_SR_Restore

 MSR PRIMASK,R0

 BX LR

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 21

3.04.03 OS_CPU_A.ASM, OSStartHighRdy()

OSStartHighRdy() is called by OSStart() to start running the highest priority task that was created

before calling OSStart(). OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest

priority task.

Listing 3-16, OSStartHighRdy()

OSStartHighRdy

 LDR R0, =NVIC_SYSPRI14 ; (1) Set the PendSV exception priority

 LDR R1, =NVIC_PENDSV_PRI

 STRB R1, [R0]

 MOV R0, #0 ; (2) Set PSP to 0 for initial context switch call

 MSR PSP, R0

 ; (3)Initialize the MSP to the OS_CPU_ExceptStkBase

 LDR R0, =OS_CPU_ExceptStkBase

 LDR R1, [R0]

 MSR MSP, R1

 LDR R0, __OS_Running ; (4) OSRunning = TRUE

 MOV R1, #1

 STRB R1, [R0]

 LDR R0, =NVIC_INT_CTRL ; (5) Trigger the PendSV exception

 LDR R1, =NVIC_PENDSVSET

 STR R1, [R0]

 CPSIE I ; (6) Enable interrupts at processor level

L3-16(1) The ARM Cortex-M4 provides a special mechanism to perform a context switch.

Specifically, the ARM Cortex-M4 provides a special exception handler called the PendSV
(Pend Service call). The PendSV is basically an interrupt mechanism that is triggered
called by software. It’s like a software interrupt except that the interrupt is not taken until
interrupts are enabled. This step sets the PendSV interrupt priority to the lowest priority.

L3-16(2) Here we setup the PSP stack pointer to run the very first task but by the PendSV handler.

This is done by setting the PSP to 0 to inform the PendSV handler to not save the context

of the task (because there is no task to save the context for since it will be the first task to
run). It is assumed that OSTCBHighRdy contains the pointer to the OS_TCB of the task to

start.

L3-16(3) Here we set the main stack to OS_CPU_ExceptStkBase

L3-16(4) Here we set OSRunning to TRUE to indicate that multitasking will start.

L3-16(5) We are ready to trigger the PendSV handler which will be starting the first task. The

PendSV handler will run only when interrupts are enabled (see next step).

L3-16(6) Once interrupts are enabled the ARM Cortex-M4 processor will branch to the PendSV

handler (described later).

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

22

3.04.04 OS_CPU_A.ASM, OSCtxSw()

When a task gives up control of the CPU, the OS_TASK_SW() macro is invoked (see OS_CPU.H) which is

translated to a call to OSCtxSw(). Normally, OSCtxSw() performs a task level context switch but, on the

ARM Cortex-M4, all context switching is deferred to the PendSV handler. OSCtxSw() thus simply

triggers the PendSV handler and returns to the caller. The PendSV handler does not execute immediately
because OS_TASK_SW() (and thus OSCtxSw()) is invoked with interrupts disabled. The PendSV

handler will only execute when interrupts are re-enabled.

OS_TASK_SW() is always called from OS_Sched() (see OS_CORE.C). The current version of

OS_Sched() is shown in Listing 3-17.

Listing 3-17, OS_Sched()

void OS_Sched (void)

{

#if OS_CRITICAL_METHOD == 3

 OS_CPU_SR cpu_sr = 0;

#endif

 OS_ENTER_CRITICAL();

 if (OSIntNesting == 0) {

 if (OSLockNesting == 0) {

 OS_SchedNew();

 if (OSPrioHighRdy != OSPrioCur) {

 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];

#if OS_TASK_PROFILE_EN > 0

 OSTCBHighRdy->OSTCBCtxSwCtr++;

#endif

 OSCtxSwCtr++;

 OS_TASK_SW();

 }

 }

 }

 OS_EXIT_CRITICAL();

}

The code for OSCtxSw() is shown in Listing 3-18. Again, all we do here is trigger the PendSV handler.

Note that OS_Sched() sets OSTCBHighRdy to point to the OS_TCB of the task we wish to switch to.

Listing 3-18, OSCtxSw()

OSCtxSw

 LDR R0, =NVIC_INT_CTRL ; trigger the PendSV exception

 LDR R1, =NVIC_PENDSVSET

 STR R1, [R0]

 BX LR

Trigger
 the

PendSV
handler

PendSV
handler

will run when interrupts
are re-enabled

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 23

3.04.05 OS_CPU_A.ASM, OSIntCtxSw()

When an ISR completes, OSIntExit() is called to determine whether a more important task than the

interrupted task needs to execute. If that’s the case, OSIntExit() determines which task to run next

and calls OSIntCtxSw(). However, unlike other µC/OS-II ports where OSIntCtxSw() actually

performs the context switch, OSIntCtxSw() for the ARM Cortex-M4 simply triggers the PendSV handler

and returns as shown in Listing 3-19.

Listing 3-19, OSIntCtxSw()

OSCtxSw

 LDR R0, =NVIC_INT_CTRL ; trigger the PendSV exception

 LDR R1, =NVIC_PENDSVSET

 STR R1, [R0]

 BX LR

3.04.06 OS_CPU_A.ASM, OS_CPU_PendSVHandler()

OSPendSV() is the PendSV handler which handles all context switching for µC/OS-II. This is a

recommended method for performing context switches with the ARM Cortex-M4. This is because the
ARM Cortex-M4 auto-saves half of the processor context on any exception, and restores those same
registers upon return from exception. The PendSV handler thus only needs to save R4-R11 and adjust
the stack pointers. Using the PendSV exception this way means that context saving and restoring uses
an identical method whether it’s initiated from a task or occurs due to an interrupt or exception.

Note that you must place a pointer to OS_CPU_PendSVHandler() in the exception vector table at vector

location 14 (based of the vector table + 4 * 14 or, offset 56).

The pseudo-code for the PendSV handler is:

Listing 3-20, OS_CPU_PendSVHandler()

OS_CPU_PendSVHandler:

if (PSP != NULL) { (1)

Save R4-R11 onto task stack; (2)

OSTCBCur->OSTCBStkPtr = SP; (3)

}

OSTaskSwHook(); (4)

OSPrioCur = OSPrioHighRdy; (5)

OSTCBCur = OSTCBHighRdy; (6)

PSP = OSTCBHighRdy->OSTCBStkPtr; (7)

Restore R4-R11 from new task stack; (8)

Return from exception; (9)

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

24

L3-20(0) Note that when OS_CPU_PendSVHandler() is started by the CPU, the CPU

automatically saves the xPSR, PC, LR, R12 and R0-R3 registers onto the task stack.

After saving half the CPU registers onto the task’s stack, the CPU switches stack pointer
to use the MSP.

L3-20(1) Here we check to see if this is the PSP stack pointer is set to NULL or not. Recall that

OSStartHighRdy() sets PSP to NULL to avoid saving the task’s context when we start

the first task.

L3-20(2) If OS_CPU_PendSVHandler() is actually triggered to perform a full task switch then we

simply save the remaining registers (R4-R11) on the task’s stack and not the ISR stack.

L3-20(3) Once the context of the task being switched out is saved, we simply save the task stack

pointer (PSP) into that task’s OS_TCB.

L3-20(4) We then call the µC/OS-II context switch hook (see OS_CPU_C.C).

L3-20(5) As with all µC/OS-II ports, we need to copy the new high priority into the current priority.

L3-20(6) Similarly, we need to copy OSTCBHighRdy into OSTCBCur.

L3-20(7) We then retrieve the current top-of-stack pointer of the task we now want to switch to.

Recall that the top-of-stack pointer is saved in OSTCBHighRdy->OSTCBStkPtr.

µC/OS-II always places .OSTCBStkPtr at the beginning of the OS_TCB , so there is no

need to find the offset of the SP, since it is always at offset 0.

L3-20(8) We restore the context of the task to execute (i.e. its register values) from the task’s stack

frame.

L3-20(9) We then perform a return from exception which causes the ARM Cortex-M4 to restore

R3-R0, R12, LR, PC and xPSR registers from the task’s stack frame. At this point, we are

running the new task.

The actual code for the OS_CPU_PendSVHandler() handler is shown in Listing 3-21. Note that the

reference numbers in the comments correspond to the same elements in the pseudo-code of Listing 3-20.

Figure 3-3 shows the context switch graphically (again with the corresponding references).

You should note that interrupts are disabled at the beginning of the PendSV handler to ensure that the
context switch is performed atomically. If an interrupt occurs while we perform the context switch, it will be
serviced once the new task is restored.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 25

Listing 3-21, OSPendSV()

OS_CPU_PendSVHandler ; (0) CPU saved xPSR, PC, LR, R12, R0-R3

 CPSID I ; Prevent interruption during context switch

 MRS R0, PSP ; (1) PSP is process stack pointer

 CBZ R0, OSPendSV_nosave ; Skip register save the first time

 SUB R0, R0, #0x20 ; (2) Save remaining regs r4-11 on process stack

 STM R0, {R4-R11}

 LDR R1, __OS_TCBCur ; (3) OSTCBCur->OSTCBStkPtr = SP;

 LDR R1, [R1]

 STR R0, [R1] ; R0 is SP of process being switched out

OSPendSV_nosave

 PUSH {R14} ; (4) OSTaskSwHook();

 LDR R0, __OS_TaskSwHook

 BLX R0

 POP {R14}

 LDR R0, __OS_PrioCur ; (5) OSPrioCur = OSPrioHighRdy

 LDR R1, __OS_PrioHighRdy

 LDRB R2, [R1]

 STRB R2, [R0]

 LDR R0, __OS_TCBCur ; (6) OSTCBCur = OSTCBHighRdy;

 LDR R1, __OS_TCBHighRdy

 LDR R2, [R1]

 STR R2, [R0]

 LDR R0, [R2] ; (7) R0 is new task SP

 ; SP = OSTCBHighRdy->OSTCBStkPtr;

 LDM R0, {R4-R11} ; (8) Restore R4-R11 from new task stack

 ADD R0, R0, #0x20

 MSR PSP, R0 ; Load PSP with new task SP

 ORR LR, LR, #0x04 ; Ensure exception return uses process stack

 CPSIE I

 BX LR ; (9) Exception return

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

26

Figure 3-3, ARM Cortex-M4 Context Switch.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

PC

SP

LR

SP SP

R5

R6

R7

R8

R9

R10

R11

R0

R1

R2

R3

R12

LR

PC

xPSR

R4

R5

R6

R7

R8

R9

R10

R11

R0

R1

R2

R3

R12

LR

PC

xPSR

R4

Before

After Before

After

(7)

(0)

&

(2)

(3)

(8)

&

(9)

ARMARMARMARM

CortexCortexCortexCortex----M4M4M4M4
OSTCBCur OSTCBHighRdy

OS_TCB OS_TCB

APSR

EPSR

IPSR

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 27

3.05 OS_DBG.C

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information

about µC/OS-II and its configuration. Specifically, OS_DBG.C contains a number of constants that are

placed in ROM (code space) which the debugger can read and display. Because you may not be using a
debugger that needs that file, you may omit it in your build.

For IAR’s C-Spy debugger, Micriµm has introduced a Windows-based ‘Plug-In’ module that makes use of
this file and thus needs to be included if you use C-Spy.

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

28

4.00 Exception Vector Table

The ARM Cortex-M4 contains an exception vector table (also called the interrupt vector table) starting at
address 0x00000000. The table can contain up to 256 entries (can be up to 1 Kbytes since each entry is

a 32-bit pointer). Each entry in the table is a pointer to the corresponding exception or interrupt handler.

The exception vector table for the ARM Cortex-M4 is shown in table 4-1:

Position Exception / Interrupt Priority Vector Address
0 - 0x00000000

1 Reset -3 (highest) 0x00000004

2 Non-maskable Interrupt -2 0x00000008

3 Hard Fault -1 0x0000000C

4 Memory Management settable 0x00000010

5 Bus Fault Settable 0x00000014

6 Usage Fault Settable 0x00000018

7 Reserved - 0x0000001C

8 Reserved - 0x00000020

9 Reserved - 0x00000024

10 Reserved - 0x00000028

11 SVCall Settable 0x0000002C

12 Debug Monitor Settable 0x00000030

13 Reserved - 0x00000034

14 PendSV Settable 0x00000038

15 SysTick Settable 0x0000003C

16 INTSIR[239] Settable 0x00000040

17 INTISR[238] Settable 0x00000044

: : Settable :

: : Settable :

255 INTISR[0] Settable 0x000003FC

Table 4-1, ARM Cortex-M4 Exception Vector Table

µC/OS-II uses the PendSV handler for context switching and the SysTick handler to process system

ticks (i.e. clock ticks). The PendSV handler disables interrupts so that it can execute atomically.

The ARM Cortex-M4 has a built-in timer which was designed specifically for RTOS use. The timer can be
configured to run at just about any tick rate. The application’s BSP should set this timer to
OS_TICKS_PER_SEC.

Note that it’s up to the application code to setup the Exception Vector Table. To help you with this task,
we created a file called APP_VECT.C that you can edit for each project.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 29

4.01 Exception / Interrupt Handling Sequence

When the CPU invokes an exception or interrupt handler, the CPU automatically pushes the xPSR, PC,
LR, R12 and R0-R3 registers onto the SP_process stack.

The CPU then reads the vector table to extract the address of the exception/interrupt handler and updates

the PC with this address. The CPU builds the exception stack frame which includes the old PC. The LR

actually gets a special value that looks something like 0xFFFFFFF9. This means it is in handler mode,

and when CM-3 sees this value attempt to load into the PC (as in BX LR), it recognizes that as an

exception return and gets the PC from the registers saved when the exception was entered. The CPU

then switches to use the SP_main stack pointer.

4.02 Interrupt Controllers

The ARM Cortex-M4 also comes with an integrated Nestable Vectored Interrupt Controller (NVIC).

4.03 Interrupt Service Routines

Interrupt Service Routines (ISRs) that need to use µC/OS-II services should be written as shown in

Listing 4-1 for the ARM Cortex-M4.

Listing 4-1, Interrupt Service Routines using µC/OS-II services.

void OS_CPU_IRQ_ISR_Handler (void)

{

 OS_CPU_SR cpu_sr = 0;

 OS_ENTER_CRITICAL(); /* Tell uC/OS-II that we are starting an ISR */

 OSIntNesting++;

 OS_EXIT_CRITICAL();

 /* Handle the Interrupt … don’t forget to clear the interrupt source */

 OSIntExit(); /* Tell uC/OS-II that we are leaving the ISR */

}

You should note that you MUST disable interrupts in order to increment OSIntNesting to ensure that

the operation is performed atomically. We do this by calling the OS_ENTER_CRITICAL() and

OS_EXIT_CRITICAL() macros.

It’s possible that some ISRs don’t need to signal a task. In those cases, your ISRs would not need to
increment OSIntNesting and call OSIntExit().

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

30

 5.00 Application Code

Your application code can make use of the port presented in this application note as described in this

section. Figure 5-1 shows a block diagram of the relationship between your application, µC/OS-II, the

µC/OS-II port, the BSP (Board Support Package), the ARM Cortex-M4 CPU and the target hardware.

Figure 5-1, Relationship between modules.

µC/OS-II
OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C

OS_MUTEX.C
OS_Q.C

OS_SEM.C
OS_TASK.C
OS_TIME.C
OS_TMR.C
uCOS_II.H

µC/OS-II

Cortex M4 Port
OS_CPU_C.C

OS_CPU_A.ASM
OS_CPU.H
OS_DBG.C

Your Application
APP.C

APP_VECT.C
APP_CFG.H
INCLUDES.H
OS_CFG.H

ARM Cortex-M4 / Target Board

BSP
BSP.C
BSP.H

Section 2

Section 3 Section 6

Section 5

µC/OS-II

Book

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 31

5.01 APP.C, APP.H and APP_CFG.H

For sake of discussion, your application is placed in files called APP.C, APP.H and APP_CFG.H. Of

course, your application (i.e. product) can contain many more files.

APP.C would be where you would place main() but, of course, you can place main() anywhere you

want.

APP_VECT.C contains the exception / interrupt vector table for the application. You can edit this file to

add your own interrupt handlers (or at least pointers to them). At vector 14, the vector table needs to point
to OS_CPU_PendSVHandler() (see OS_CPU_A.ASM) and at vector 15, the vector table need to point to

OS_CPU_SysTickHandler() (see BSP.C).

APP_CFG.H contains #define constants to configure the application. We placed task stack sizes task

priorities and other #defines in this file. This allows you to find task priorities and sizes in one place.

APP.C is a standard test file for µC/OS-II examples. The two important functions are main() (listing 5-

1) and AppStartTask() (listing 5-2).

Listing 6-1, main()

void main (void)

{

#if (OS_TASK_NAME_EN > 0)

 CPU_INT08U err;

#endif

#if (CPU_CFG_NAME_EN == DEF_ENABLED)

 CPU_ERR cpu_err;

#endif

 CPU_Init(); (1)

 Mem_Init(); (2)

 Math_Init(); (3)

#if (CPU_CFG_NAME_EN == DEF_ENABLED)

 CPU_NameSet((CPU_CHAR *)"TMPM364FD",

 (CPU_ERR *)&cpu_err);

#endif

 BSP_IntDisAll(); (4)

 OSInit(); (5)

 OSTaskCreateExt(AppStartTask, (6)

 (void *)0,

 (OS_STK *)&AppStartTaskStk[APP_TASK_START_STK_SIZE-1],

 APP_TASK_START_PRIO,

 APP_TASK_START_PRIO,

 (OS_STK *)&AppStartTaskStk[0],

 APP_TASK_START_STK_SIZE,

 (void *)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

#if (OS_TASK_NAME_EN > 0)

 OSTaskNameSet(APP_CFG_TASK_START_PRIO, "Start", &err); (7)

#endif

 OSStart(); (8)

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

32

 return (1);

}

L5-1(1) Initialize the CPU module which initializes CPU timestamps, CPU interrupt disable time

measurements and the CPU host name.

L5-1(2) Initialize the Memory Management Module.

L5-1(3) Initialize the Mathematic Module.

L5-1(4) We need to disable interrupts to ensure we do not get interrupted until we complete the

initialization sequence.

L5-1(5) As with all µC/OS-II based applications, you need to initialize µC/OS-II by calling

OSInit().

L5-1(6) You need to create at least one task. In this case, we created the task using the extended

task create call. This allow µC/OS-II to have more information about your task. Specifically,

with the IAR toolchain, the extra information allows the C-Spy debugger to display stack

usage information when you use the µC/OS-II Kernel Awareness Plug-In.

L5-1(7) We can now give names to tasks and those can be displayed by Kernel Aware debuggers

such as IAR’s C-Spy.

L5-1(8) In order to start multitasking, you need to call OSStart(). Note that OSStart() will not

return from this call.

Listing 5-2, AppStartTask()

static void AppStartTask (void *p_arg)

{

 CPU_INT32U cpu_clk_freq;

 CPU_INT32U cnts;

 (void)p_arg;

 BSP_Init(); (1)

 cpu_clk_freq = BSP_CPU_ClkFreq();

 cnts = cpu_clk_freq / (CPU_INT32U)OS_TICKS_PER_SEC;

 OS_CPU_SysTickInit(cnts); (2)

#if OS_TASK_STAT_EN > 0

 OSStatInit(); (3)

#endif

 APP_TRACE_INFO(("Creating Application Events...\n\r")); (4)

 App_EventCreate();

 APP_TRACE_INFO(("Creating Application Tasks...\n\r")); (5)

 App_TaskCreate();

 while (TRUE) {

 APP_TRACE_INFO(("Hello World from Start Task\n\r")); (6)

 OSTimeDlyHMSM(0, 0, 1, 0); (7)

 }

}

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 33

L5-2(1) If you decided to implement a BSP (see section 6, Board Support Package) for your target
board, you would initialize it here.

L5-2(1) You should now initialize the SysTick, which will provided the µC/OS-II time tick.

L5-2(3) If you enabled the statistic task by setting OS_TASK_STAT_EN in OS_CFG.H to 1) then, you

need to call it here. Please note that you need to make sure that you initialized and enabled

the µC/OS-II clock tick because OSStatInit() assumes the presence of clock ticks. In

other words, if the tick ISR is not active when you call OSStatInit(), your application will

end up in µC/OS-II’s idle task and not be able to run any other tasks.

L5-2(4) At this point, you can create additional events. We decided to place all our task initialization in

one function called App_EventCreate() but, you are certainly welcome to use a different

technique.

L5-2(5) At this point, you can create additional tasks. We decided to place all our task initialization in

one function called App_TaskCreate() but, you are certainly welcome to use a different

technique.

L5-2(6) You can now perform whatever additional function you want for this task. The example

outputs “Hello World from Start Task”

L5-2(7) We decided to toggle the message every second.

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

34

5.02 INCLUDES.H

INCLUDES.H is a master include file and is found at the top of all .C files. INCLUDES.H allows every .C

file in your project to be written without concern about which header file is actually needed. The only
drawbacks to having a master include file are that INCLUDES.H may include header files that are not

pertinent to the actual .C file being compiled and the compilation process may take longer. These
inconveniences are offset by code portability. You can edit INCLUDES.H to add your own header files, but

your header files should be added at the end of the list.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 35

6.00 BSP (Board Support Package)

It is often convenient to create a Board Support Package (BSP) for your target hardware. A BSP could
allow you to encapsulate the following functionality:

 Timer initialization
 ISR Handlers
 LED control functions
 Reading switches
 Setting up the interrupt controller
 Setting up communication channels
 Etc.

A Micriµm BSP consist of at least 2 files: BSP.C and BSP.H.

Each BSP should contain a BSP initialization function. We called ours BSP_Init() and should be called

by your application code.

6.01 BSP (Board Support Package) – LED Management

A number of evaluation boards are equipped with LEDs, we decided to create LED control functions as
follows:

 void BSP_LED_On(CPU_INT08U led_id);
 void BSP_LED_Off(CPU_INT08U led_id);
 void BSP_LED_Toggle(CPU_INT08U led_id);

In this case, LEDs are referenced ‘logically’ instead of physically. When you write the BSP, you determine
which LED is LED #1, which is LED #2, etc. When you want to turn on LED #1, you simply call
BSP_LED_On(1). If you want to toggle LED #2, you simply call BSP_LED_Toggle(2). In fact, you can

(and should) associate names to your LEDs using #defines. You could thus specify

BSP_LED_Off(LED_PM).

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

36

7.00 Conclusion

This application note presented a ‘generic’ port ARM Cortex-M4 processors. The port should be easily

adapted to different compilers (the code itself should be identical). Of course, if you use µC/OS-II and

use the port on actual hardware, you will need to initialize and properly handle hardware interrupts.

 µC/OS-II for ARM Cortex-M4 Processor with the Kinetis K60

 37

 Licensing

If you intend to use µC/OS-II in a commercial product, remember that you need to contact Micriµm to

properly license its use in your product. The use of µC/OS-II in commercial applications is NOT-FREE.

Your honesty is greatly appreciated.

References

MicroC/OS-II, The Real-Time Kernel, 2P

nd
P Edition

Jean J. Labrosse
CMP Books, 2002
ISBN 1-5782-0103-9

Contacts

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA
+1 785 841 1631
+1 785 841 2624 (FAX)
WEB: HTUhttp://www.rdbooks.com UTH

e-mail: HTUrdorders@rdbooks.com UTH

Freescale
6501 William Cannon Drive West
Austin, Texas 78735
USA
+1 800 521 6274

WEB: http://www.freescale.com

IAR Systems, Inc.
Century Plaza
1065 E. Hillsdale Blvd
Foster City, CA 94404
USA
+1 650 287 4250
+1 650 287 4253 (FAX)
WEB: HTUhttp://www.IAR.com UTH

e-mail: HTUinfo@IAR.com UTH

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
+1 954 217 2036
+1 954 217 2037 (FAX)
e-mail: Sales@Micrium.com

WEB: HTUwww.Micrium.com UTH

 µC/OS-II for the ARM Cortex-M4 Processor with the Kinetis K60

38

Notes

