MIXED SIGNAL MICROCONTROLLER

FEATURES

- Ultra-Low Supply Voltage (ULV) Range
 - 0.9 V to 1.5 V (1 MHz)
 - 1.5 V to 1.65 V (4 MHz)
- Low Power Consumption
 - Active Mode (AM): 45 μA/MHz (1.3 V)
 - Standby Mode (LPM3, WDT_A Mode): 6 μA
 - Off Mode (LPM4): 3 μA
- Wake-Up From LPMx in Less Than 5 μs
- 16-Bit RISC Architecture
 - Extended Instructions
 - Up to 4-MHz System Clock
- Compact Clock System
 - 1-MHz Internal Trimmable High-Frequency Clock
 - 20-kHz Internal Low-Frequency Clock Source
 - External Clock Input
- 16-Bit Timer0_A3 With Three Capture/Compare Registers
- 16-Bit Timer1_A3 With Three Capture/Compare Registers
- ULV Analog Pool Modes
 - 8-Bit Analog-to-Digital Converter (ADC)
 - 8-Bit Digital-to-Analog Converter (DAC)
 - Programmable Comparator (COMP)
 - Supply Voltage Monitor (SVM)
 - Temperature Sensor
 - Internal Reference Voltage Source

- ULV Port Logic
 - Vol Better Than 0.15 V at 2.5 mA
 - V_{OH} Better Than V_{CC} 0.15 V at 1 mA
 - Timer0 PWM Signal Available on All Ports
 - Timer1 PWM Signal Available on All Ports
- ULV Brownout Circuit (BOR)
- ULV RAM Retention Voltage Below BOR Level
- 32-Bit Watchdog Timer (WDT-A)
- Bootstrap Loader in MSP430L092 Development/Prototyping Device
- Full Four-Wire JTAG Debug Interface
- Family Members Include
 - MSP430C091
 - 1KB ROM Memory
 - 128 Bytes RAM + 96 Bytes CRAM (Lockable)
 - MSP430C092
 - 2KB ROM Memory
 - 128 Bytes RAM + 96 Bytes CRAM (Lockable)
 - MSP430L092
 - 2KB Loader ROM With Service Functions
 - 2KB RAM (1792 + 128 + 96 Bytes Lockable)
- For Complete Module Descriptions, See the MSP430x09x Family User's Guide (SLAU321)

DESCRIPTION

The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled internal oscillators allow wake-up from low-power modes to active mode in less than 5 µs.

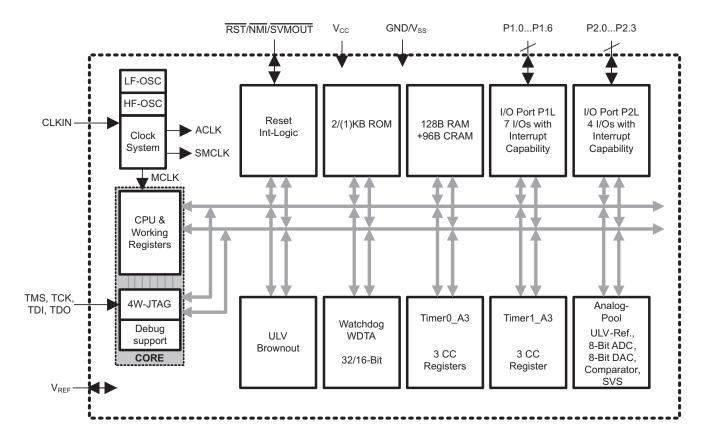
The MSP430C09x and MSP430L092 series are microcontroller configurations with two 16-bit timers, an ultra-low-voltage 8-bit analog-to-digital (A/D) converter, an 8-bit digital-to-analog (D/A) converter, and up to 11 I/O pins.

Typical applications for this device include single-cell systems requiring a full analog signal chain.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TEXAS INSTRUMENTS

ORDERING INFORMATION(1)

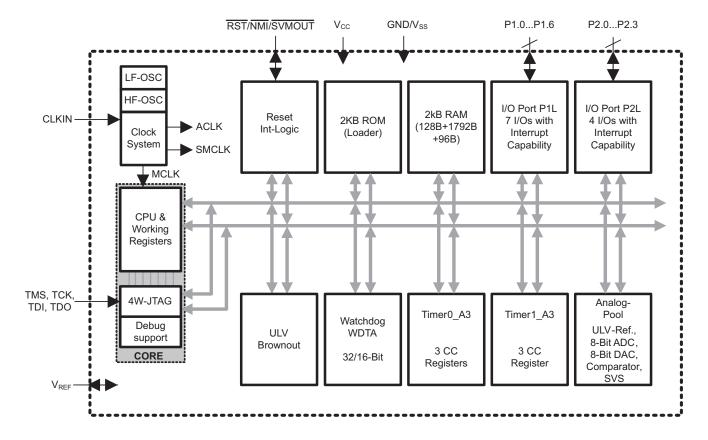

T _A	PACKAGED DEVICES ⁽²⁾ PLASTIC 14-PIN TSSOP (PW)
	MSP430C091SPW
0°C to 50°C	MSP430C092SPW
	MSP430L092SPW

- For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/package.

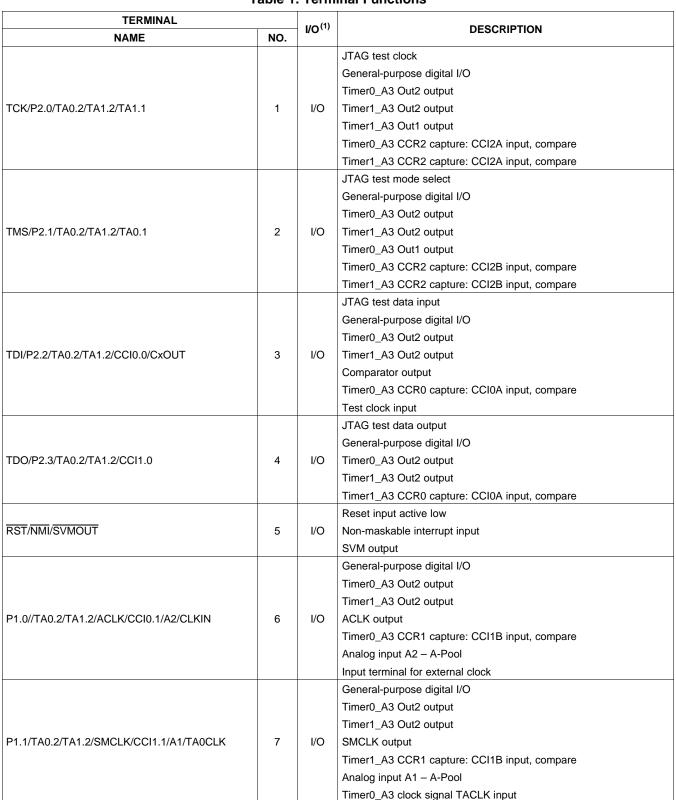
Pin Designation, MSP430C091PW, MSP430C092PW

PW PACKAGE (TOP VIEW) TCK/P2.0/TA 0.2/TA 1.2/TA 1.1 Ⅲ 10 14 P1.6/TA0.2/TA1.2/TA1.1 TMS/P2.1/TA0.2/TA1.2/TA0.1 T 2 13 □ P1.5/TA0.2/TA1.2/TA0.1 TDI/P2.2/TA0.2/TA1.2/CxOUT/CCI0.0 [3 12 TP1.4/TA0.2/TA1.2/MCLK/A0/TA1CLK □ V_{CC} 11 RST/NMI/SVMOUT [5 10 W V_{SS}/GND P1.3/TA0.2/TA1.2/CxOUT/CCI1.0/VREF/A3 P1.0/TA0.2/TA1.2/ACLK/CCI0.1/A2/CLKIN 1 6 9 8 P1.2/TA0.2/TA1.2/ACLK/CCI0.0/AOUT/A3 P1.1/TA0.2/TA1.2/SMCLK/CCI1.1/A1/TA0CLK **1** 7

Functional Block Diagram, MSP430C092PW, MSP430C091PW



Pin Designation, MSP430L092PW


Instruments

PW PACKAGE (TOP VIEW) 14 P1.6/TA0.2/TA1.2/TA1.1 SPI_MOSI/TMS/P2.1/TA0.2/TA1.2/TA0.1 [2 13 **Ⅲ** P1.5/TA0.2/TA1.2/TA0.1 SPI_CLK/TDI/P2.2/TA0.2/TA1.2/CxOUT/CCI0.0 **□** 3 12 TP1.4/TA0.2/TA1.2/MCLK/A0/TA1CLK 11 🔟 V_{CC} RST/NMI/SVMOUT II 5 10 W Vss/GND 9 P1.3/TA0.2/TA1.2/CxOUT/CCI1.0/VREF/A3 P1.0/TA0.2/TA1.2/ACLK/CCI0.1/A2/CLKIN **[**] 6 P1.1/TA0.2/TA1.2/SMCLK/CCI1.1/A1/TA0CLK **7** 8 P1.2/TA0.2/TA1.2/ACLK/CCI0.0/AOUT/A3/BOOST

Functional Block Diagram, MSP430L092PW

STRUMENTS

www.ti.com

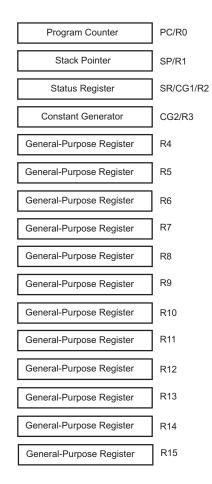
Table 1. Terminal Functions (continued)

TERMINAL		I/O ⁽¹⁾	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
			Timer1_A3 Out2 output	
P1.2/TA0.2/TA1.2/ACLK/CCI0.0/AOUT/A3	8	I/O	ACLK output	
			Timer0_A3 CCR0 capture: CCI0B input, compare	
			Analog input A3 – A-Pool	
			Analog output – A-Pool	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
			Timer1_A3 Out2 output	
P1.3/TA0.2/TA1.2/CxOUT/CCI1.0/VREF/A3	9	I/O	Comparator output	
			Timer1_A3 CCR0 capture: CCI0B input, compare	
			Analog input A3 – A-Pool	
			Reference voltage input / output	
V _{SS} /GND	10		Analog and digital power supply ground reference	
V _{CC}	11		Analog and digital power supply	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
P1.4/TA0.2/TA1.2/MCLK/A0/TA1CLK	12	I/O	Timer1_A3 Out2 output	
			MCLK Output	
			Analog input A0 – A-Pool	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
P1.5/TA0.2/TA1.2/TA0.1	13	I/O	Timer1_A3 OUT2 output	
			Timer0_A3 OUT1 output	
			Timer0_A3 CCR1 capture: CCI1A input, compare	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
P1.6/TA0.2/TA1.2/TA1.1	14	I/O	Timer1_A3 OUT2 output	
			Timer1_A3 OUT1 output	
			Timer1_A1 CCR1 capture: CCI1A input, compare	

SHORT-FORM DESCRIPTION

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.


The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

Instruction Set

The instruction set consists of the original 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 2 shows examples of the three types of instruction formats, Table 3 shows the address modes.

Table 2. Instruction Word Formats

Dual operands, source-destination	e.g., ADD	R4,R5	R4 + R5 → R5
Single operands, destination only	e.g., CALL	R8	PC→(TOS), R8 →PC
Relative jump, un/conditional	e.g., JNE		Jump-on-equal bit = 0

Table 3. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs, Rd	MOV R10, R11	R10 → R11
Indexed	•	•	MOV X(Rn), Y(Rm)	MOV 2(R5), 6(R6)	M(2+R5)→ M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE, TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	•	•	MOV & MEM, & TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	•		MOV @Rn, Y(Rm)	MOV @R10, Tab(R6)	$M(R10) \rightarrow M(Tab+R6)$
Indirect autoincrement	•		MOV @Rn+, Rm	MOV @R10+, R11	M(R10) → R11 R10 + 2→ R10
Immediate	•		MOV #X, TONI	MOV #45, TONI	#45 → M(TONI)

(1) S = source D = destination

Operating Modes

The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active for all sources
 - MCLK is disabled
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK and SMCLK remain active (for LF oscillator and CLKIN as source, HF oscillator is mapped to LF oscillator as source)
 - MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK is disabled
 - SMCLK is disabled
 - ACLK remains active for all sources
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK is disabled
 - SMCLK is disabled
 - ACLK remains active (for LF oscillator and CLKIN as source, HF oscillator is mapped to LF oscillator as source)
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - MCLK is disabled
 - SMCLK is disabled
 - ACLK is disabled
 - Oscillators are stopped

LPM2 vs LPM3

If only MCLK is feed by the HF oscillator (SELA \neq 00, SELS \neq 00, SELM = 00 of CCSCTL4 register) the following behavior is implemented:

- Entering LPM2 turns off the HF oscillator and starts again with the HF oscillator selected for MCLK
- Entering LPM3 turns off the HF oscillator and starts again with the LF oscillator selected for MCLK

The only difference between LPM2 and LPM3 is the selection of the source for MCLK when re-entering active mode and, therefore, and the level of power savings.

Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 4. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up External Reset Watchdog	WDTIFG ⁽¹⁾	Reset	0x0FFFE	15, highest
System NMI Vacant memory access	SVMIFG, VMAIFG ⁽¹⁾	(Non)maskable	0x0FFFC	14
User NMI NMI	NMIIFG (1)(2)	(Non)maskable	0x0FFFA	13
Timer1_A3	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0x0FFF8	12
Timer1_A3	TA1CCR1 CCIFG1 (1)(3)	Maskable	0x0FFF6	11
Watchdog Timer_A Interval Timer Mode	WDTIFG	Maskable	0x0FFF4	10
A-Pool	CxIFG	Maskable	0x0FFF2	9
I/O Port P1	P1IFG.0 to P1IFG.6 ⁽¹⁾⁽³⁾	Maskable	0x0FFF0	8
Timer0_A3	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0x0FFEE	7
Timer0_A3	TA0CCR1 CCIFG1 ⁽¹⁾⁽³⁾	Maskable	0x0FFEC	6
I/O Port P2	P2IFG.0 to P2IFG.3 ⁽¹⁾⁽³⁾	Maskable	0x0FFEA	5
			0x0FFE8	4
Reserved	Reserved ⁽⁴⁾		:	
			0x0FFE0	0

Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽³⁾ Interrupt flags are located in the module.

⁽⁴⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations.

Special Function Registers (SFRs)

The MSP430 SFRs are located in the lowest address space and can be accessed via word or byte formats.

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is reset or set by PUC. rw-(0,1): Bit can be read and written. It is reset or set by POR.

SFR bit is not present in device.

Interrupt Enable 1

15	14	13	12	11	10	9	8
							SVMIE
rO	rO	rO	rO	r0	rO	rO	rw-0
7	6	5	4	3	2	1	0
JMBOUTIE	JMBINIE		NMIIE	VMAIE		OFIE	WDTIE
rw-0	rw-0	r0	rw-0	rw-0	r0	rw-0	rw-0

SVMIE SVM interrupt enable

JMBOUTIE JMBINIE

NMIIE Nonmaskable-interrupt enable

VMAIE Vacant memory access interrupt enable

OFIE

WDTIE Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as a

general-purpose timer.

Interrupt Enable 2

15	14	13	12	11	10	9	8
							SVMIFG
rO	rO	rO	r0	rO	rO	r0	rw-0
7	6	5	4	3	2	1	0
JMBOUTIFG	JMBINIFG		NMIIFG	VMAIFG		OFIFG	WDTIFG
rw-0	rw-0	r0	rw-0	rw-0	r0	rw-0	rw-0

SVMIFG Set by SVM when voltage falls below set voltage

JMBOUTIFG JMBINIFG

NMIIFG Set via RST/NMI pin

VMAIFG Set on vacant memory access

OFIFG

WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation

Reset on V_{CC} power-on or a reset condition at the RST/NMI pin in reset mode

Reset Pin Control Register		
15 14 13 12 11 10	9	8
r0 r0 r0 r0 r0	rO	rO
7 6 5 4 3 2	1	0
SYSRSTRE SYSRSTUP	SYSNMIES	SYSNMI
r0 r0 r0 r0 r1 r1	r1	rw-0

SYSRSTRE Indicates resistor present on RST pin

 SYSRSTUP
 Indicates pullup on RST pin

 SYSNMIES
 Indicates NMI edge select

 SYSNMI
 NMI enable on RST/NMI pin

Memory Organization

Table 5. Memory Organization

	,							
	TYPE	MSP430C091	MSP430C092	MSP430L092	MSP430L092 (EMU) ⁽¹⁾			
Primary interrupt	DOM	32 B	32 B	32 B	32 B			
vectors	ROM	0x0FFE0 ⁽²⁾ – 0x0FFFF						
Secondary interrupt vectors	RAM Lockable			0x01C60 - 0x01C7F				
Application ROM	ROM	864 B	1888 B		ROM not available			
memory	KOW	0x0FC80 - 0x0FFDF	0x0F880 - 0x0FFDF					
Boot Code (BC) / DOM (b., TI)		128 B (BC)	128 B (BC)	2016 B (Loader)	Config/loading by tool			
Loader Code	ROM (by TI)	0x0F800 - 0x0F87F	0x0F800 - 0x0F87F	0x0F800 - 0x0FFDF	0x0F800 - 0x0F87F			
544		128B	128B	128 B	128 B			
RAM memory	RAM	0x02380 - 0x023FF	0x02380 - 0x023FF	0x02380 - 0x023FF	0x02380 - 0x023FF			
LRAM memory	RAM			1792 B	1760 B			
(lockable)	KAW			0x01C80 - 0x0237F	0xF900 - 0xFFDF			
CRAM memory	DAM	96 B	96 B	96 B	128 B ⁽³⁾			
(lockable)	RAM	0x01C00 - 0x01C5F	0x01C00 - 0x01C5F	0x01C00 - 0x01C5F	0x0F880 - 0x0F8FF			
Darinharala	Ciro	4 kB	4 kB	4 kB	4 kB			
Peripherals	Size	0x00000 - 0x00FFF	0x00000 - 0x00FFF	0x00000 - 0x00FFF	0x00000 - 0x00FFF			

⁽¹⁾ The MSP430L092 emulates the MSP430C092 device (MSP430C091 emulation via tool and software).

Start-Up Code (SUC)

The MSP430C09x start-up code checks the password and releases control to the application or enables JTAG on password match, enters LPM4, and waits for a debug session. The behavior of the SUC is described in the MSP430L092 Loader Code User's Guide (SLAU324).

Loader Code (Loader)

The MSP430L092 loader checks the presence of an external SPI/I2C memory device containing a valid code signature, loads validated code into the application LRAM, and starts the application. The loader program uses P1.2 with an external circuit to pump up the voltage required for SPI memory device readout. For complete description of the features of the loader and its implementation, see the *MSP430L092 Loader Code User's Guide* (SLAU324).

INSTRUMENTS

⁽²⁾ Not the whole interrupt vector range of CSYS is used on MSP430x09x devices (see Table 4).

⁽³⁾ Resets and interrupt redirections in RAM with alternate interrupt vectors cannot be emulated.

RAM Memory

The RAM memory is split into three ranges for different purposes: application memory, lockable application memory, and calibration memory.

Lockable application memory and calibration memory can be protected against accidental erasure by setting a dedicated lock bit in the special functions register (System Maintenance Register).

Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x09x Family User's Guide (SLAU321).

Digital I/O

There are two I/O ports implemented: P1 (7 I/O lines) and P2 (4 I/O lines).

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt input capability for all ports on P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 and P2) or word-wise in pairs (P1/P2 combo).

Oscillator and System Clock

The clock system in the MSP430x09x family of devices is supported by the Compact Clock System (CCS) module that includes support for an internal 20-kHz current-controlled low-frequency oscillator (LF-OSC), an internal adjustable 1-MHz current-controlled high-frequency oscillator (HF-OSC), and an external clock input from CLKIN; however, a missing CLKIN signal does not trigger an oscillator failsafe mechanism in this family.

The CCS module is designed to meet the requirements of both low system cost and low power consumption. The CCS provides a fast turn-on of the oscillators, less than 1 ms. The CCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from the 20-kHz internal LF-OSC, the 1-MHz internal HF-OSC, or CLKIN.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK.
- VLOCLK is an ultra-low-power low-frequency clock that is available as long the device is powered.

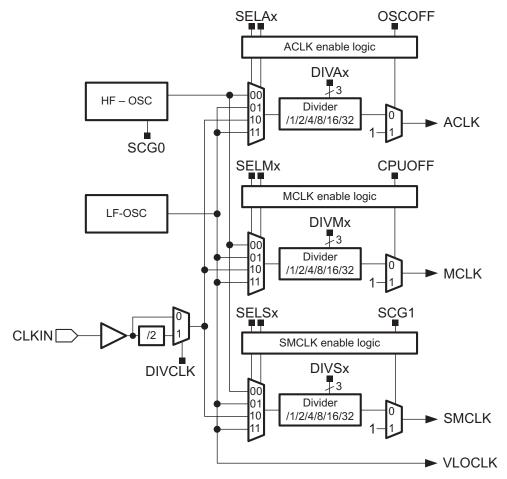


Figure 1. Compact Clock System (CCS) Block Diagram

Watchdog Timer (WDT A)

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

Table 6. WDT_A Signal Connections

DEVICE CLOCK SIGNAL	MODULE CLOCK SIGNAL
ACLK	ACLK
SMCLK	SMCLK
LF-OSC-CLK	VLOCLK
LF-OSC-CLK	X-CLK

Compact System Module (C-SYS)

The Compact SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, and configuration management. It also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.

SLAS673 -SEPTEMBER 2010

RST/NMI/SVMOUT System

The reset system of the MSP430x09x family features the functions reset input, reset output, NMI input, SVM output, and SVS input.

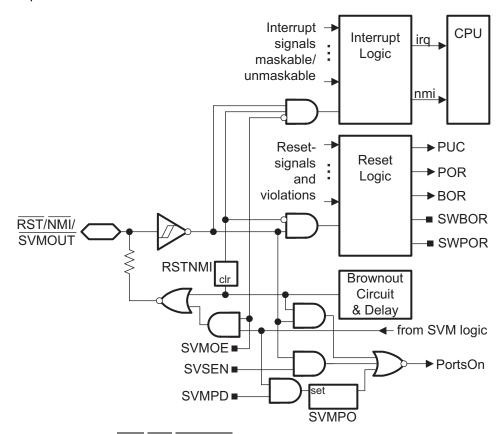


Figure 2. RST/NMI/SVMOUT and PortsOn Logic Block Diagram

Table 7. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	OR INTERRUPT VECTOR		OFFSET	PRIORITY
	No interrupt pending		00h	
	Brownout (BOR)		02h	Highest
	SVMBOR (BOR)		04h	
	RST/NMI (BOR)		06h	
	DoBOR (BOR)		08h	
	Security violation (BOR)		0Ah	
SYSRSTIV, System Reset	DoPOR(POR)	019Eh	0Ch	
	WDT timeout (PUC)		0Eh	
	WDT key violation (PUC)		10h	
	CCS key violation		12h	
	PMM key violation		14h	
	Peripheral area fetch (PUC)		16h	
	Reserved		18h-3Eh	Lowest
	No interrupt pending	No interrupt pending		
	SVMIFG		02h	Highest
CVCCNIIV Curtara NIMI	VMAIFG	019Ch	04h	
SYSSNIV, System NMI	JMBINIFG	019Ch	06h	
	JMBOUTIFG		08h	
	Reserved		0Ah-3Eh	Lowest
	No interrupt pending		00h	
	NMIFG		02h	Highest
SYSUNIV, User NMI	OFIFG	019Ah	04h	
	BERR		06h	
	Reserved		08h-3Eh	Lowest
CVCDEDDIV Duo Essos	No interrupt pending	0400h	00h	
SYSBERRIV, Bus Error	Reserved	0198h	02h-3Eh	Lowest

Timer0_A3

Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 8. Timer0_A3 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT	MODULE INPUT	MODULE BLOCK	MODULE BLOCK MODULE OUTPUT SIGN	MODULE	DEVICE OUTPUT	OUTPUT PIN NUMBER					
PW	SIGNAL	SIGNAL		OUTPUT SIGNAL	SIGNAL	PW						
7 – P1.1	TA0CLK	TACLK										
	ACLK	ACLK	Timer	Timer	NA	NA						
	SMCLK	SMCLK			INA	INA						
7 – P1.1	TA0CLK	TACLK										
3 – P2.2	CCI0.0	CCI0A	CCR0									
8 – P1.2	CCI0.0	CCI0B		TA0	TAO 0							
	V _{SS}	GND		TA0	TA0.0							
	V _{CC}	V _{CC}										
13 – P1.5	TA0.1	CCI1A	0001									2 – P2.1
6 – P1.0	CCI0.1	CCI1B		T 4 4	TAO 4	13 – P1.5						
	V _{SS}	GND	CCR1	TA1	TA0.1							
	V _{CC}	V _{CC}										
1 – P2.0	TA0.2	CCI2A				1-4 - P2.0-P2.3						
2 – P2.1	TA0.2	CCI2B	CCDO	TA 0	TAO 0	6-9 – P1.0-P1.3						
	V _{SS}	GND	CCR2	TA2	TA0.2	12-14 – P1.4-P1.6						
	V _{CC}	V _{CC}										

TEXAS INSTRUMENTS

Timer1_A3

Timer1_A3 is a 16-bit timer/counter with three capture/compare registers. Timer1_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer1_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 9. Timer1_A3 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER			
PW	SIGNAL	SIGNAL		OUTPUT SIGNAL	SIGNAL	PW			
12 – P1.4	TA1CLK	TACLK							
	ACLK	ACLK	Timer	NA	NA				
	SMCLK	SMCLK	Timei	INA	INA				
12 – P1.4	TA1CLK	TACLK							
4 – P2.3	CCI1.0	CCI0A							
9 – P1.3	CCI1.0	CCI0B	CCB0 TA0	CCR0 TA0	TA0	TA1.0			
	V _{SS}	GND	CCRU	TAO		TAU			
	V _{CC}	V _{CC}							
14 – P1.6	TA1.1	CCI1A					1 – P2.0		
7 – P1.1	CCI1.1	CCI1B	CCR1	CCP1	CCD4	T. 4	T 4 4	TA1.1	14 – P1.6
	V _{SS}	GND		TA1					
	V _{CC}	V _{CC}							
1 – P2.0	TA1.2	CCI2A				1-4 - P2.0-P2.3			
2 – P2.1	TA1.2	CCI2B	CCDO	TA 0	T44.0	6-9 – P1.0-P1.3			
	V _{SS}	GND	CCR2	TA2	TA1.2	12-14 - P1.4-P1.6			
	V _{CC}	V _{CC}							

A-Pool

The analog functions pool (A-Pool) provides a series of functions that can be configured to a digital-to-analog converter (DAC), multichannel analog-to-digital converter (ADC), supply voltage supervisor (SVS), and comparator. Input voltage dividers and an internal reference source allow a wide range of combined analog functions.

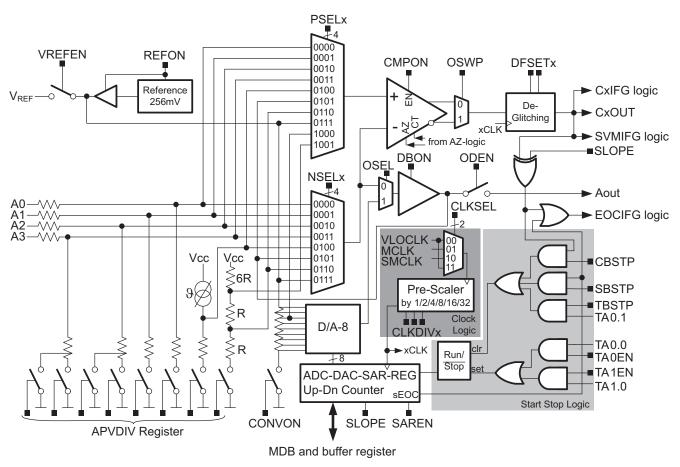


Figure 3. A-Pool Block Diagram

TEXAS INSTRUMENTS

Versatile I/O Port P1, P2

The versatile I/O ports P1 and P2 feature device-dependent reset values. The reset values for the MSP430x09x devices are shown in Table 10.

Table 10. Versatile Port Reset Values

PORT NUMBER	PxOUT	PxDIR	PxREN	PxSEL0	PxSEL1	RESET	PORTS ON	COMMENT
P1.0	0	0	0	0	0	PUC	yes	P1.0, input
P1.1	0	0	0	0	0	PUC	yes	P1.1, input
P1.2	0	0	0	0	0	PUC	yes	P1.2, input
P1.3	0	0	0	0	0	PUC	yes	P1.3, input
P1.4	0	0	0	0	0	PUC	yes	P1.4, input
P1.5	0	0	0	0	0	PUC	yes	P1.5, input
P1.6	0	0	0	0	0	PUC	yes	P1.6, input
P1.7	-	-	-	-	-	-	-	-
P2.0	1	0	1	1	1	BOR	no	JTAG TCK, input, pullup
P2.1	1	0	1	1	1	BOR	no	JTAG TMS, input, pullup
P2.2	1	0	1	1	1	BOR	no	JTAG TDI, input, pullup
P2.3	0	1	0	1	1	BOR	no	JTAG TDO, output, pullup

Peripheral File Map

Table 11. Peripherals

MODULE NAME	REGISTER DESCRIPTION	REGISTER	BASE ADDRESS	OFFSET
	Timer1_A interrupt vector	TA1IV		2Eh
	Capture/compare register 2	TA1CCR2		16h
	Capture/compare register 1	TA1CCR1		14h
	Capture/compare register 0	TA1CCR0		12h
Timer1_A3	Timer1_A register	TA1R	0380h	10h
	Capture/compare control 2	TA1CCTL2		06h
	Capture/compare control 1	TA1CCTL1		04h
	Capture/compare control 0	TA1CCTL0		02h
	Timer1_A control	TA1CTL		00h
	Timer0_A interrupt vector	TAOIV		2Eh
	Capture/compare register 2	TA0CCR2		16h
	Capture/compare register 1	TA0CCR1		14h
	Capture/compare register 0	TA0CCR0		12h
Timer0_A3	Timer1_A register	TA0R	0340h	10h
	Capture/compare control 2	TA0CCTL2		06h
	Capture/compare control 1	TA0CCTL1		04h
	Capture/compare control 0	TA0CCTL0		02h
	Timer1_A control	TA0CTL		00h

Table 11. Peripherals (continued)

MODULE NAME	REGISTER DESCRIPTION	REGISTER	BASE ADDRESS	OFFSET
	Port P2 interrupt Flag	P2IFG		1Dh
	Port P2 interrupt enable	P2IE		1Bh
	Port P2 interrupt edge select	P2IES		19h
Dort D2	Port P2 interrupt vector word	P2IV		1Eh
	Port P2 selection 1	P2SEL1	00001-	0Dh
Port P2	Port P2 selection 0	P2SEL0	0200h	0Bh
	Port P2 pullup/pulldown enable	P2REN		07h
	Port P2 direction	P2DIR		05h
	Port P2 output	P2OUT		03h
	Port P2 input	P2IN		01h
	Port P1 interrupt Flag	P1IFG		1Ch
	Port P1 interrupt enable	P1IE		1Ah
	Port P1 interrupt edge select	P1IES		18h
	Port P1 interrupt vector word	P1IV		0Eh
	Port P1 selection 1	P1SEL1		0Ch
Port P1	Port P1 selection 0	P1SEL0	0200h	0Ah
	Port P1 pullup/pulldown enable	P1REN		06h
	Port P1 direction	P1DIR		04h
	Port P1 output	P1OUT		02h
	Port P1 input	P1IN		00h
	Analog pool interrupt vector register	APIV		1Eh
	Analog pool interrupt enable register	APIE		1Ch
	Analog pool interrupt flag register	APIFG		1Ah
	Analog pool fractional value buffer	APFRACTB		16h
	Analog pool fractional value register	APFRACT		14h
A-POOL	Analog pool integer value buffer	APINTB	01A0h	12h
	Analog pool integer value register	APINT		10h
	Analog pool voltage divider register	APVDIV		06h
	Analog pool operation mode register	APOMR		04h
	Analog pool control register	APCTL		02h
	Analog pool configuration register	APCNF		00h
	Reset vector generator	SYSRSTIV		1Eh
	System NMI vector generator	SYSSNIV		1Ch
	User NMI vector generator	SYSUNIV		1Ah
	Bus error vector generator	SYSBERRIV		18h
	System Configuration register	SYSCNF		10h
CSYS	JTAG mailbox output register #1	SYSJMBO1	0180h	0Eh
	JTAG mailbox output register #0	SYSJMB00		0Ch
	JTAG mailbox input register #1	SYSJMBI1		0Ah
	JTAG mailbox input register #0	SYSJMBI0		08h
	JTAG mailbox control register	SYSJMBC		06h
	System control register	SYSCTL		00h

Table 11. Peripherals (continued)

MODULE NAME REGISTER DESCRIPTION		REGISTER	BASE ADDRESS	OFFSET
	CCS control 15 register	CCSCTL15		1Eh
	CCS control 8 register	CCSCTL8		10h
	CCS control 7 register	CCSCTL7		0Eh
ccs	CCS control 5 register	CCSCTL5	0460h	0Ah
CCS	CCS control 4 register	CCSCTL4	0160h	08h
	CCS control 2 register	CCSCTL2		04h
	CCS control 1 register	CCSCTL1		02h
	CCS control 0 register	CCSCTL0		00h
WDT_A	Watchdog timer control	WDTCTL	0150h	0Ch
PMM	PMM control 0	PMMCTL0	0120h	00h
ET-Wrapper	ET Key and select	ETKEYSEL	0110h	00h
	SFR Reset pin control register	SFRRPCR		04h
Special Functions	SFR interrupt flag register	SFRIFG1	0100h	02h
	SFR interrupt enable register	SFRIE1		00h

Absolute Maximum Ratings⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

refreedimentation ranges of eapply vertage and operating free an temperature (amose externed freed)				
Voltage applied at V _{CC} referenced to V _{SS} (V _{AMR})	–0.3 V to 1.90 V			
Voltage applied to any pin (references to V.)	-0.3 V to V _{CC} + 0.3 V			
Voltage applied to any pin (references to V _{SS})	–0.3 V to 1.90 V			
Diode current at any device pin ⁽²⁾	±2.5 mA			
Current derating factor when I/O ports are switched in parallel electrically and logically ⁽³⁾	0.9			
Storage temperature range (4)	−55°C to 150°C			
ESD tolerance, Human-Body Model (HBM)	2000 V			

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- All voltages referenced to V_{SS}.

 The diode current increases to ±4.5 mA when two pins are connected, ± 6.75 mA for three pins.

 Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

Recommended Operating Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage during program exe	ecution	0.9		1.65	V
V _{SS}	Supply voltage (GND reference)			0		V
T _A	Operating free-air temperature		0		50	ů
C _{VCC}	Capacitor on V _{CC}			470		nF
f _{SYSTEM} (1)(Contain an area time from a contain	$V_{CC} > 0.9 \text{ V}, t_{LOW} \ge 450 \text{ ns}, t_{HIGH} \ge 450 \text{ ns}$		1		MHz
2)	System operating frequency	V _{CC} > 1.5 V, t _{LOW} ≥ 113 ns, t _{HIGH} ≥ 113 ns		4		MHz

- The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
- Modules may have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.

Active Mode Supply Current (Into V_{CC}) Excluding External Current $^{(1)(2)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A	MIN	TYP	MAX	UNIT
	f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 20 kHz,	0.9 V			59	68	
	Program executes in RAM,	1.3 V	0°C		72	84	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V			86	101	
	f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 20 kHz,	0.9 V			59	68	
I _{AM,1MHz}	Program executes in RAM,	1.3 V	30°C		72	84	μΑ
	CPUOFF = 0, $SCG0 = 0$, $SCG1 = 0$, $OSCOFF = 0$	1.65 V			86	101	
	f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 20 kHz,	0.9 V			60	70	
	Program executes in RAM, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.3 V	50°C		74	87	
		1.65 V			88	105	
	f _{MCLK} = f _{SMCLK} = 125 kHz, f _{ACLK} = 20 kHz, Program executes in RAM, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	0.9 V	0°C		31	35	μA
		1.3 V			33	38	
		1.65 V			37	42	
	f _{MCLK} = f _{SMCLK} = 125 kHz, f _{ACLK} = 20 kHz	0.9 V			31	35	
I _{AM,125kHz}	Program executes in RAM	1.3 V	30°C		33	38	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V			37	42	
	f _{MCLK} = f _{SMCLK} = 125 kHz, f _{ACLK} = 20 kHz,	0.9 V			32	37	
	Program executes in RAM,	1.3 V	50°C		35	41	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V			40	48	
I _{AM} /MHz	$ \begin{aligned} &f_{MCLK} = f_{SMCLK}: 1 \text{ to 5 MHz}, f_{ACLK} = 20 \text{ kHz} \\ &\text{Program executes in RAM, CPUOFF} = 0, SCG0 = 0, \\ &\text{SCG1} = 0, OSCOFF = 0 \end{aligned} $	1.3 V	30°C		45		μΑ/ MHz

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. Characterized with program executing typical data processing "Type2".

Low-Power Mode Supply Current (Into V_{CC}) Excluding External Current⁽¹⁾⁽²⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A	MIN TYP	MAX	UNIT
		0.9 V		6.6	8	
I _{LPM0}		1.3 V	0°C	7.6	9	
		1.65 V		8.6	11	
		0.9 V		7	9	
	$f_{MCLK} = f_{SMCLK} = 1$ MHz, $f_{ACLK} = 20$ kHz CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.3 V	30°C	8.3	11	μΑ
	01 0011 = 1, 0000 = 0, 0001 = 0, 000011 = 0	1.65 V		9.5	12	
		0.9 V		8.9	12	
		1.3 V	50°C	11	14	
		1.65 V		12	17	
		0.9 V		6.6	8	
		1.3 V	0°C	7.6	9	μΑ
		1.65 V		8.6	11	
		0.9 V		7	9	
I _{LPM1}	f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 20 kHz CPUOFF = 1, SCG0 = 1, SCG1 = 0, OSCOFF = 0	1.3 V	30°C	8.3	11	
	0. 00. 1 = 1, 0000 = 1, 0001 = 0, 000011 = 0	1.65 V		9,5	12	
		0.9 V		8.9	12	
		1.3 V	50°C	11	14	
		1.65 V		12	17	

Current for WDT clocked by ACLK included.

STRUMENTS

Current for Brownout included. (2)

Low-Power Mode Supply Current (Into V_{cc}) Excluding External Current⁽¹⁾⁽²⁾ (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A	MIN	TYP	MAX	UNIT
		0.9 V			26	30	
		1.3 V	0°C to 30°C		28	32	μΑ
	f _{MCLK} = f _{SMCLK} = 1MHz, f _{ACLK} = 1MHz CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	1.65 V			29	33	
LPM2,1MHz	CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	0.9 V			28	32	
		1.3 V	50°C		30	35	
PARAMETER LPM2,1MHz LPM2,20kHz		1.65 V			32	38	
		0.9 V			6.6	8	
		1.3 V	0°C		7.6	10	
		1.65 V			8.6	11	
		0.9 V			7	10	
I _{LPM2,20kHz}	$f_{MCLK} = f_{SMCLK} = f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	1.3 V	30°C		8.3	12	μΑ
, -	CF00FF = 1, 3CG0 = 0, 3CGT = 1, 03COFF = 0	1.65 V			9.5	13	
		0.9 V			8.9	13	
		1.3 V	50°C		11	15	
		1.65 V			12	17	
		0.9 V	0°C		6.6	8	μА
		1.3 V			7.6	9	
		1.65 V			8.6	11	
		0.9 V	30°C		7.1	9	
I _{LPM3}	$f_{MCLK} = f_{SMCLK} = f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0	1.3 V			8.3	11	
	CFOOFF = 1, 3CG0 = 1, 3CG1 = 1, OSCOFF = 0	1.65 V			9.5	12	
		0.9 V			8.9	12	
		1.3 V	50°C		11	14	
		1.65 V			12	17	
		0.9 V			3.2	4.7	
		1.3 V	0°C		5.1	6.3	
		1.65 V			6.5	8	
		0.9 V			4	5.7	-
I _{LPM4}	f _{MCLK} = f _{SMCLK} = f _{ACLK} = 20 kHz CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	1.3 V	30°C		6	7.9	μA
	Groupe = 1, Sugu = 1, Sugu = 1, USCUPF = 1	1.65 V	1		7.8	10	· -
		0.9 V			6	8.9	
		1.3 V	50°C		8.6	12	
		1.65 V	_ 30 C		11	16	

Ports P1 and P2, RST/NMI/SVMOUT

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	$V_{CC} = 0.9 \text{ V}, I_{OH} = -1 \text{ mA}^{(1)} \text{ for ports P1, P2}$	V _{CC} - 0.25			
V_{OH}	$V_{CC} = 1.65 \text{ V}, I_{OH} = -1 \text{ mA}^{(1)} \text{ for ports P1, P2}$	V _{CC} - 0.15			V
	$V_{CC} = 0.9 \text{ V}, I_{OH} = -300 \mu A^{(1)} \text{ for ports P1, P2}$	V _{CC} - 0.15			
	$V_{CC} = 0.9 \text{ V}, I_{OL} = 2.5 \text{ mA}^{(2)} \text{ for ports P1, P2}$			0.2	
V_{OL}	V _{CC} = 1.65 V, I _{OL} = 2.5 mA ⁽²⁾ for ports P1, P2			0.15	V
	$V_{CC} = 0.9 \text{ V}, I_{OL} = 300 \mu A^{(2)} \text{ for ports P1, P2}$			0.2	
	V _{CC} = 1.65 V			0.3 × V _{CC} 0.25 × V _{CC} 75	V
V_{IL}	V _{CC} = 0.9 V			0.25 × V _{CC}	V
W	V _{CC} = 1.65 V	0.7 × V _{CC}			V
V_{IH}	V _{CC} = 0.9 V	0.75 × V _{CC}			V
V _{HYS}	Intrinsic hysteresis		150		mV
	V_{CC} = 0.9 V, C_L = 15 pF R_L = 750 Ω to V_{SS} on V_{OH} for ports P1, P2			75	
Δt/Δν	V_{CC} = 0.9 V, C_L = 15 pF R_L = 320 Ω to V_{CC} on V_{OL} for ports P1, P2			75	ns/V
Δι/Δν	V_{CC} = 1.65 V, C_L = 25 pF R_L = 1600 Ω to V_{SS} on V_{OH} for ports P1, P2			75	HS/V
	V_{CC} = 1.65 V, C_L = 25 pF R_L = 600 Ω to V_{SS} on V_{OL} for ports P1, P2			75	
I _{OH}	V _{CC} = 0.9 V to 1.65 V for ports P1, P2	-1			mA
I _{OL}	V _{CC} = 0.9 V to 1.65 V for ports P1, P2	2.5			mA
I _{LKG}	V _{CC} = 0.9 V to 1.65 V (at 50°C)			±100	nA
t _{INT}	P0.x, V _{CC} = 0.9 V to 1.65 V		200		ns
R _{PULL}	For pullup: VIN = V_{SS} , For pulldown: VIN = V_{CC} for ports P1, P2	30	35	40	kΩ
R _{RST}	Pullup on RST/NMI/SVMOUT	30	35	40	kΩ
R _{EXT}	External pullup resistor on RST terminal (optional)	680			kΩ
Cı	$V_{IN} = V_{SS}$ or V_{CC}		7		pF

 ⁽¹⁾ The maximum total current I_{OH}, for all outputs combined should not exceed 5 mA to hold the maximum voltage drop specified.
 (2) The maximum total current I_{OL}, for all outputs combined should not exceed 15 mA to hold the maximum voltage drop specified.

0.1

TYPICAL LOW-LEVEL OUTPUT VOLTAGE

NSTRUMENTS

3

2.5

2

1.5

1

0.5

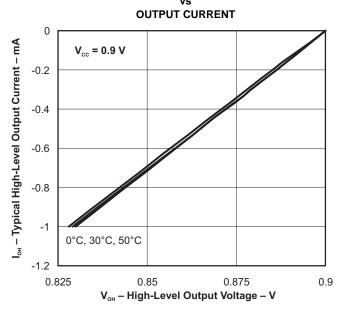
0

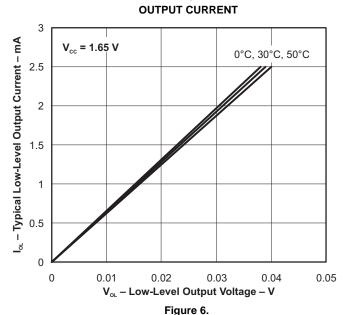
0

IoL - Typical Low-Level Output Current - mA

OUTPUT CURRENT V_{cc} = 0.9 V 0°C, 30°C, 50°C

TYPICAL HIGH-LEVEL OUTPUT VOLTAGE




Figure 5.

TYPICAL LOW-LEVEL OUTPUT VOLTAGE vs

Figure 4.

0.05

V_{ol} – Low-Level Output Voltage – V

TYPICAL HIGH-LEVEL OUTPUT VOLTAGE

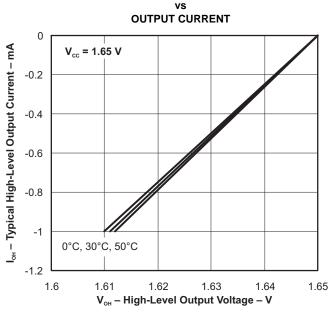


Figure 7.

NSTRUMENTS

Typical Characteristics – Outputs (continued)

TYPICAL LOW-LEVEL OUTPUT VOLTAGE

LARGE SIGNAL OUTPUT CURRENT

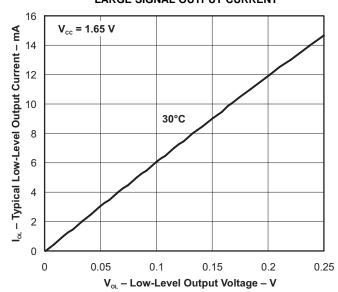
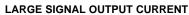



Figure 8.

TYPICAL HIGH-LEVEL OUTPUT VOLTAGE

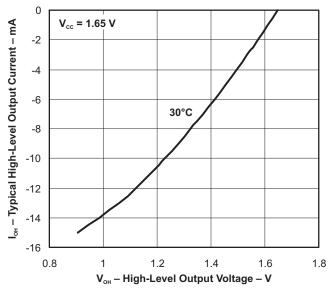
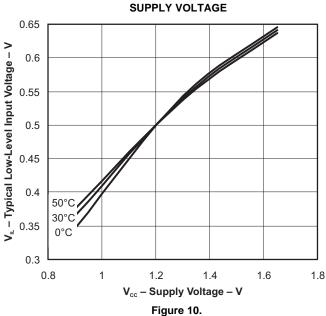
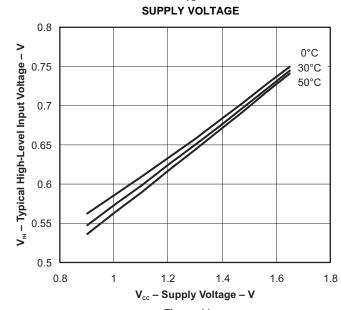




Figure 9.

TYPICAL LOW-LEVEL INPUT VOLTAGE

TYPICAL LOW-LEVEL INPUT VOLTAGE

High-Frequency Oscillator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{HFOSC}	V _{CC} = 0.9 V to 1.65 V (minimum trim range via register)	0.75	1	1.25	MHz
f _{HFOSC}	V _{CC} = 0.9 V to 1.65 V (trimmed at 30°C)	0.92	1	1.08	MHz
Duty cycle	V _{CC} = 0.9 V to 1.65 V	45	50	55	%
t _{START}	V _{CC} = 0.9 V to 1.65 V			20	μs
Δf _{HFOSC} /DT	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, f_{HFOSC} = 1 \text{ MHz}$		±0.07	±0.15	%/°C
$\Delta f_{HFOSC}/\Delta V_{CC}$	V_{CC} = 1.0 V to 1.65 V, f_{HFOSC} = 1 MHz			±1	%/V
$\Delta f_{HFOSC}/\Delta V_{CC}$	$V_{CC} = 0.90 \text{ V to } 1.0 \text{ V}, f_{HFOSC} = 1 \text{ MHz}$		±1	±2.5	%/V
Δf _{HFOSC} /CALSTEP ⁽¹⁾	V_{CC} = 0.9 V to 1.65 V, f_{HFOSC} = 1 MHz, ±64 calibration steps	0.1	1	4	%/ Step
losc	V _{CC} = 0.9 V to 1.65 V, f _{HFOSC} = 1 MHz		22		μΑ

(1) Normalized to typical frequency

Typical Characteristics – High-Frequency Oscillator FREQUENCY vs TRIM SETTING

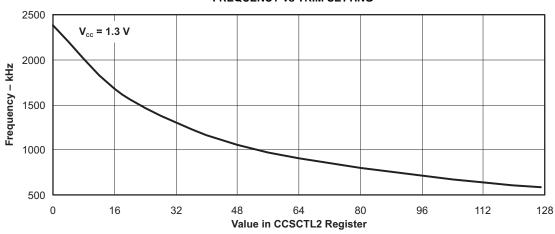


Figure 12.
FREQUENCY vs TEMPERATURE

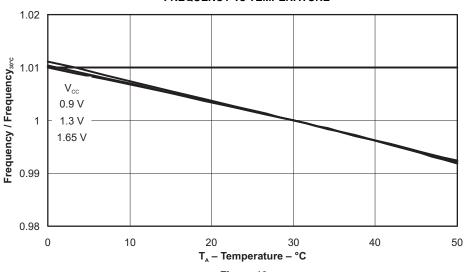
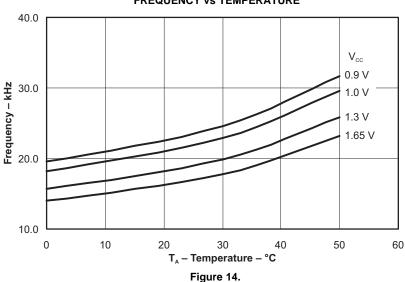


Figure 13.



Low-Frequency Oscillator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{LFOSC}	V _{CC} = 0.9 V to 1.65 V	6	20	45	kHz
Duty cycle	V _{CC} = 0.9 V to 1.65 V	45	50	55	%
t _{START}	V _{CC} = 0.9 V to 1.65 V			500	μs
losc	V _{CC} = 0.9 V to 1.65 V, f _{LFOSC} = 20 kHz		0.6		μΑ

Typical Characteristics – Low-Frequency Oscillator FREQUENCY vs TEMPERATURE

Brown-Out Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{BOR(Start)}		490			mV
V _(BOR_IT+)	V_{CC} rising, $\Delta V_{CC}/\Delta t < 3 \text{ V/s}$	1095		1150	mV
V _(BOR_IT-)	V_{CC} falling, $\Delta V_{CC}/\Delta t < 3 \text{ V/s}$	860		900	mV
V _{hys(BOR)}			200		mV
V _{MARGIN}	$V_{MARGIN} = V_{(BOR-IT-)} - V_{CRIT}, (V_{CRIT} < 820 \text{ mV})^{(1)}$	40			mV
t _{d(BOR)}				3000(2	μs

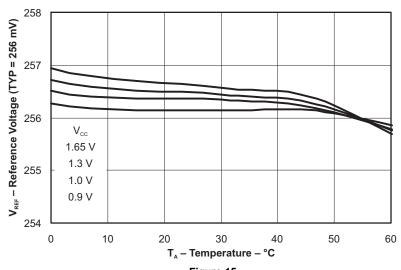
⁽¹⁾ V_{CRIT} is a temperature depending voltage where the single components of the device become unreliable (the 'L092 provides a safety margin to ensure overall device function).

⁽²⁾ Strongly depends on voltage ramp in system (actually a maximum typical value).

A-POOL, External Reference Source

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF}	V _{CC} = 0.9 V to 1.65 V, ADC / DAC operational	100		275	mV
	V_{CC} = 0.9 V to 1.65 V, ADC / DAC not operational	0		V_{CC}	V
I _{REF(Input)}	V _{CC} = 0.9 V to 1.65 V, load to external sinks		3		μΑ
C _{REF}	REFON = 0	20		50	pF


A-POOL, Built-In Reference Source

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP MA	X UNIT
V_{REF}	V _{CC} = 0.9 V to 1.65 V (±1.5%, overall 3%)		256	mV
I _{REF}	V _{CC} = 0.9 V to 1.65 V		10	μΑ
C _{REF}	REFON = 1	20	5	0 pF
T _{REF}	V_{CC} = 0.9 V to 1.65 V (Δ V/ Δ T × V_{REF} referenced to 25°C)	=	±250	
t _{SETTLE}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, \text{ REFON} = 1, C_{REF} = C_{REF} (\text{max})^{(1)}$	9	00 ⁽¹⁾	μs
I _{REF(Output)}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, \text{ REFON} = 1, C_{REF} = C_{REF} \text{(max)}$		2	μΑ

(1) As the actual on reference enable signal is synchronized with the LF oscillator.

Typical Characteristics – A-POOL Built-In Reference Source VOLTAGE vs TEMPERATURE

A-POOL, Temperature Sensor

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SENSOR}	V _{CC} = 0.9 V to 1.65 V		2		μΑ
TC _{SENSOR}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, T_A = 0^{\circ}\text{C to } 50^{\circ}\text{C } (\Delta\text{V}/\Delta\text{T referenced to } 30^{\circ}\text{C})$		464		μV/°C
V _{OFFSET25}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V at } T_A = 30^{\circ}\text{C}$		179		mV
tsettle	V _{CC} = 0.9 V to 1.65 V (before start of conversion)			15	μs
V _{SENSOR} ⁽¹⁾	V _{CC} = 0.9 V to 1.65 V, T _A = 0°C to 50°C		179		mV

⁽¹⁾ This formula can be used to calculate the temperature sensor output voltage: V_{SENSOR} = V_{OFFSET25} + TC_{SENSOR} × (T_A − 30°C).

A-POOL, Input Voltage Dividers

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP MAX				
ΔRx/Rx	Any Rx in dividers		±1.5		%	
ΔRX/RX	Any Rx across switches and internal supply voltage divider (by 4, by 8)		±2		70	
	On A0/A1 , VA0/VA1 = 0.5V, ADIV0/ADIV1 = 1 (500-mV range)	120	200	300		
RIN	On A2/A3 , VA2/VA3 = 0.5V, ADIV2/ADIV4 = 1 (1-V range)	80	133	190	kΩ	
	On A2/A3 , VA2/VA3 = 0.5V, ADIV2+ADIV3/ADIV4+ADIV5 = 1 (2-V range)	70	114	150	•	
ΔI_{VCC}	ADIV7 = 1 (supply voltage divider on)		2		μΑ	

A-POOL, DAC-8

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF}	V _{CC} = 0.9 V to 1.65 V		256		mV
•	On ±1 LSB steps (6 τ), V _{CC} = 0.9 V to 1.65 V, external V _{REF}		2		
^t SETTLE	Between all codes > 20 on AOUT (6 τ), V_{CC} = 0.9 V to 1.65 V, external V_{REF}		14		μs
EI	V_{CC} = 0.9 V to 1.65 V, external V_{REF} , add ±7 mV for V_{OUT} offset ⁽¹⁾ for codes > 7			±3	LSB
ED	V_{CC} = 0.9 V to 1.65 V, external VREF, add ±7 mV for V_{OUT} offset ⁽¹⁾ for codes > 7			±1	LSB

⁽¹⁾ This offset can be compensated using software.

A-POOL, Comparator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	V _{CC} = 0.9 V to 1.65 V	0		275	mV
	Overdrive = 20 mV			0.5	
t _{pd}	Overdrive = 5 mV			0.5	μs
	Overdrive = 1 mV			1	

A-POOL, AOUT Terminal

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
I _{LOAD} V	V 00V+0165V C 25 pF	V _{OUT} > 50 mV (accuracy ±1% of V _{OUT})	5			
	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, C_{LOAD} = 25 \text{ pF}$	V _{OUT} > 20 mV (accuracy ±1% of V _{OUT})	2			μΑ
t _{SETTLE}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, C_{LOAD} = 25 \text{ pF}, \pm 1^{\circ}$	% (6τ) (for AOUT 20 to 256 mV)			4	μs

A-POOL, ADC-8 Counter

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{CNT}	V _{CC} = 0.9 V to 1.65 V			1	MHz
t _{CONV}	Full conversion (all codes), f _{CNT} = 1 MHz		256		μs

RAM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OP}	Operating temperature 0°C to 70°C, f _{CPU} = 1MHz	900			mV
V_{RET}	Operating temperature 0°C to 70°C (tracks BOL level)	700			mV

PORT SCHEMATICS

Port P1, P1.0 Input/Output

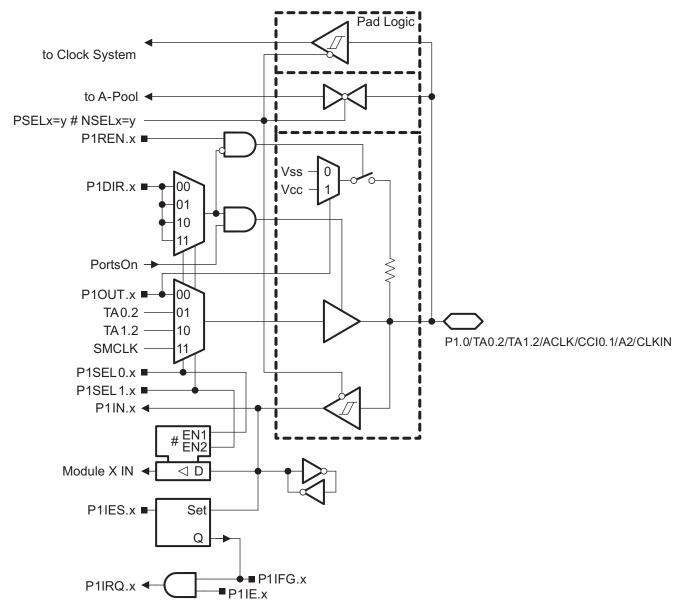
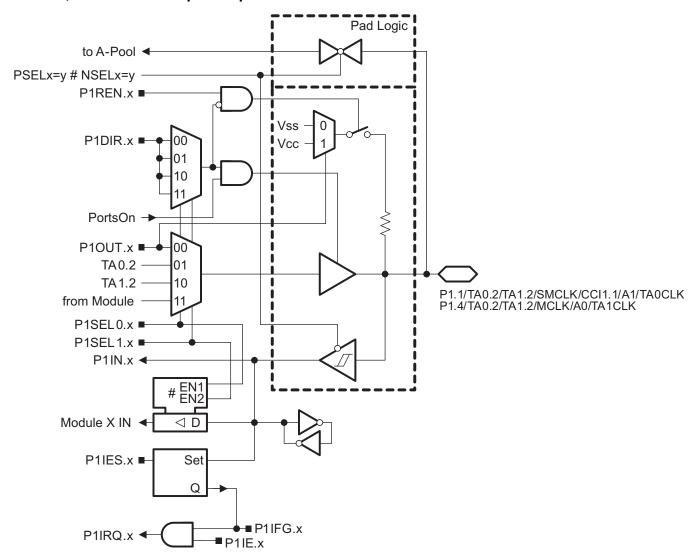


Table 12. Port P1 (P1.0) Pin Functions

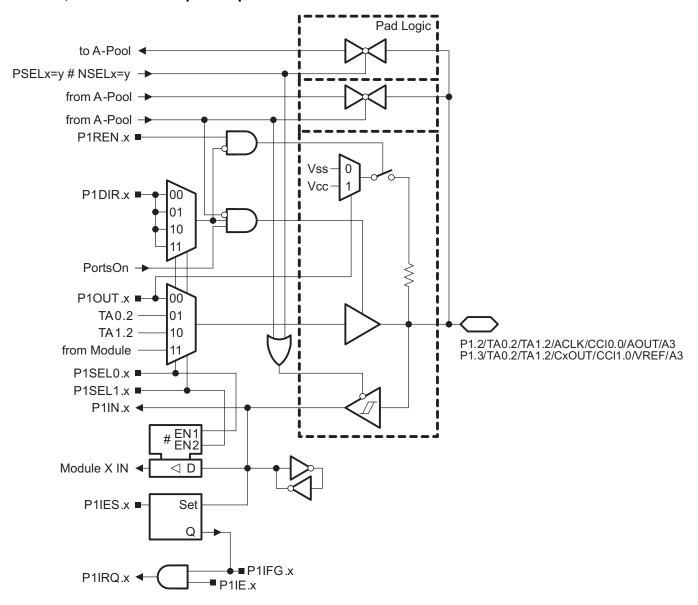

			CONTROL BITS/SIGNALS ⁽¹⁾						
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	RSELx/ASE Lx			
		P1.0 (I/O)	I:0, O:1	0	0	0			
		Timer_A0.2	1	0	1	0			
		Timer_A1.2	1	1	0	0			
P1.0/TA0.2/TA1.2/ACLK/ CCI0.1/A2/CLKIN	0	ACLK	1	1	1	0			
OOIO. III LEI OLI (III V		Timer A0, CCI1B	0	≠0	≠0	X			
		A2	X	Х	X	2			
		CLKIN (via Bypass)	X	Х	X	X			

(1) X = Don't care

INSTRUMENTS

Port P1, P1.1 and P1.4 Input/Output

Table 13. Port P1 (P1.1, P1.4) Pin Functions


PIN NAME (P1.x)			CONTROL BITS/SIGNALS ⁽¹⁾					
		FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	RSELx/ASE Lx		
	1	P1.1 (I/O)	I:0, O:1	0	0	0		
		Timer_A0.2	1	0	1	0		
D		Timer_A1.2	1	1	0	0		
P1.1/TA0.2/TA1.2/SMCLK/ CCI1.1/A1/TA0CLK		SMCLK	1	1	1	0		
GOTT. III THE GET		A1	X	X	X	1		
		TimerA0 CLK	X	≠0	≠0	X		
		Timer A1, CCI1B	0	≠0	≠0	X		
	4	P1.4 (I/O)	I:0, O:1	0	0	0		
		Timer_A0.2	1	0	1	0		
P1.4/TA0.2/TA1.2/MCLK/		Timer_A1.2	1	1	0	0		
A0/TA1CLK		MCLK	1	1	1	0		
		A0	Х	Х	Х	0		
		TimerA1 CLK	0	≠0	≠0	Х		

⁽¹⁾ X = Don't care

www.ti.com

Port P1, P1.2 and P1.3 Input/Output

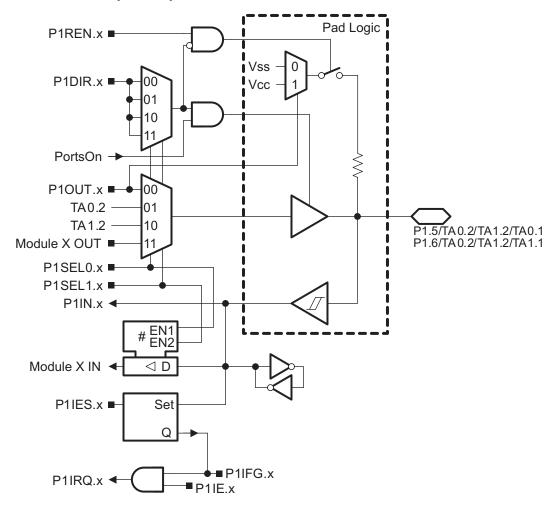
Table 14. Port P1 (P1.2, P1.3) Pin Functions

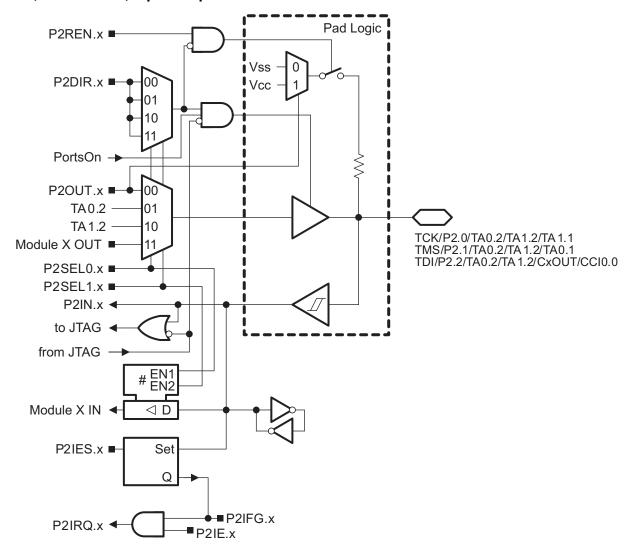
PIN NAME (P1.x)			CONTROL BITS/SIGNALS ⁽¹⁾						
		FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	RSELx/ASE Lx	Analog Out		
	2	P1.2 (I/O)	I:0, O:1	0	0	0	0		
		Timer_A0.2	1	1 0 1		0	0		
		Timer_A1.2	1	1 1 0		0	0		
P1.2/TA0.2/TA1.2/ACLK/ CCI0.0/AOUT/A3		ACLK	1	1	1	0	0		
0010.0/4001/40		Timer A0, CCI0B	0	≠0	≠0	Х	X		
		A3	X	Х	Х	3	X		
		AOUT ⁽²⁾	X	Х	Х	Х	1		
		P1.3 (I/O)	I:0, O:1	0	0	0	0		
		Timer_A0.2	1	0 1		0	0		
		Timer_A1.2	1	1	0	0	0		
P1.3/TA0.2/TA1.2/CxOUT/ CCI1.0//VREF/A3	3	CxOUT	1	1	1	0	0		
		Timer A1, CCI0B	0	≠0	≠0	Х	X		
		A3	X	Х	Х	3	Х		
		VREF ⁽²⁾	X	Х	Х	Х	1		

⁽¹⁾ X = Don't care

⁽²⁾ An analog output enable overrides the digital output control.

Port P1, P1.5 and P1.6 Input/Output




Table 15. Port P1 (P1.5, P1.6) Pin Functions

DIN NAME (D4 v)		FUNCTION	CONT	CONTROL BITS/SIGNALS ⁽¹⁾			
PIN NAME (P1.x)	X		P1DIR.x	P1SEL1.x	P1SEL0.x		
		P1.5 (I/O)	I:0, O:1	0	0		
		Timer_A0.2	1	0	1		
P1.5/TA0.2/TA1.2/TA0.1	5	Timer_A1.2	1	1	0		
		Timer A0.1	1	1	1		
		Timer_A0.CCI1A	0	≠0	≠0		
		P1.6 (I/O)	I:0, O:1	0	0		
		ner_A0.2	1	0	1		
P1.6/TA0.2/TA1.2/TA1.1	6	Timer_A1.2	1	1	0		
		Timer A1.1	1	1	1		
		Timer_A1.CCI1A	0	≠0	≠ 0		

(1) X = Don't care

TEXAS INSTRUMENTS

Port P2, P2.0 to P2.2, Input/Output

Table 16. Port P2 (P2.0 to P2.2) Pin Functions

DIN NAME (DO)		FUNCTION	CONTROL BITS/SIGNALS ⁽¹⁾					
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	JTAG Mode		
		P2.0 (I/O)	I:0, O:1	0	0	0		
		Timer_A0.2	1	0	1	0		
TCK/P2.0/TA0.2/	0	Timer_A1.2	1	1	0	0		
TA1.2/TA1.1	0	Timer_A1.1	1	1	1	0		
		Timer_A0.CCI2A and Timer_A1.CCI2A	0	≠0	≠0	0		
		JTAG-TCK ⁽²⁾⁽³⁾⁽⁴⁾	Х	Х	Х	1		
		P2.1 (I/O)	I:0, O:1	0	0	0		
		Timer_A0.2	1	0	1	0		
TMS/P2.1/TA0.2/		Timer_A1.2	1	1	0	0		
TA1.2/TA0.1	1	Timer_A0.1	1	1	1	0		
		Timer_A0.CCl2B and Timer_A1.CCl2B	0	≠0	≠0	0		
		JTAG-TMS ⁽²⁾⁽³⁾⁽⁴⁾	X	Х	X	1		
		P2.2 (I/O)	I:0, O:1	0	0	0		
		Timer_A0.2	1	0	1	0		
TDI/P2.2/TA0.2/TA1.2/ CxOUT/CCI0.0	2	Timer_A1.2	1	1	0	0		
	2	CxOUT	1	1	1	0		
		Timer_A0.CCI0A	0	≠0	≠0	0		
		JTAG-TDI ⁽²⁾⁽³⁾⁽⁴⁾	Х	Х	Х	1		

X = Don't care
 JTAG signals TMS,TCK and TDI read as "1" when nor configured as explicit JTAG terminals
 JTAG overrides digital output control when configured as explicit JTAG terminals
 JTAG function with enabled pullup resistors is default after power up

TEXAS INSTRUMENTS

Port P2, P2.3, Input/Output

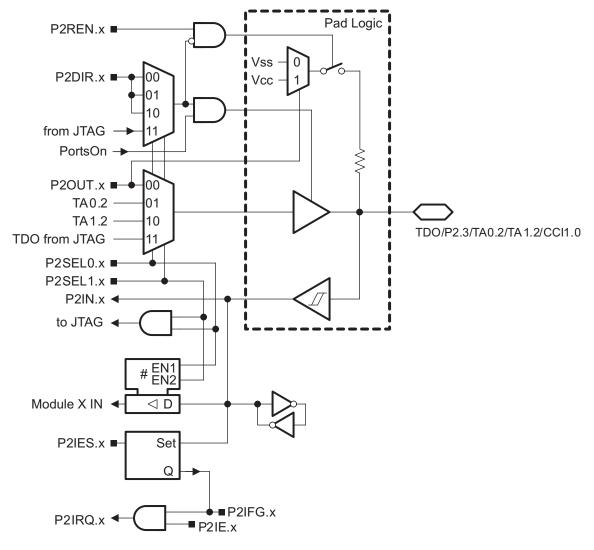


Table 17. Port P2 (P2.3) Pin Functions

PIN NAME (P2.x)	x	FUNCTION	CONTROL BITS/SIGNALS ⁽¹⁾			
			P2DIR.x	P2SEL1.x	P2SEL0.x	
TDO/P2.0/TA0.2/TA1.2/ CCI1.0		P2.0 (I/O)	I:0, O:1	0	0	
		Timer_A0.2	1	0	1	
	3	Timer_A1.2	1	1	0	
		JTAG-TDO(2)(3)	1	1	1	
		Timer_A1.CCI0A	0	≠0	≠0	

(1) X = Don't care

www.ti.com 25-Aug-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430L092CY	PREVIEW	DIESALE	Υ	0	1	TBD	Call TI	Call TI	Samples Not Available
MSP430L092SPW	PREVIEW	TSSOP	PW	14	90	TBD	Call TI	Call TI	Samples Not Available
MSP430L092SPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

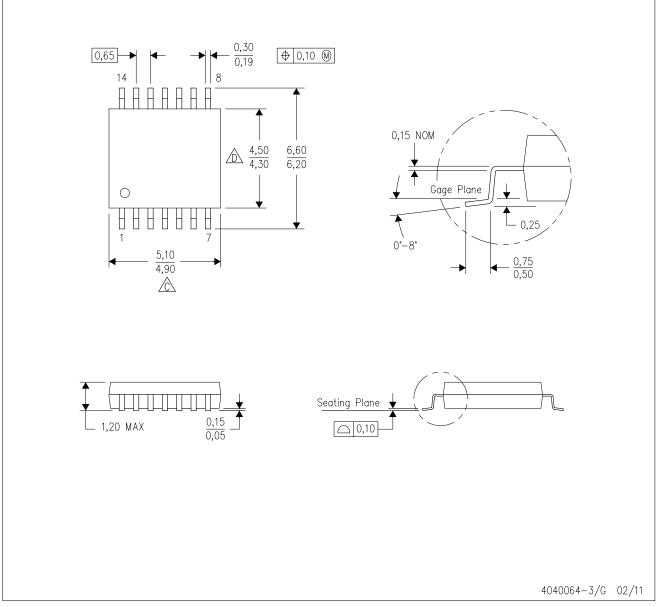
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

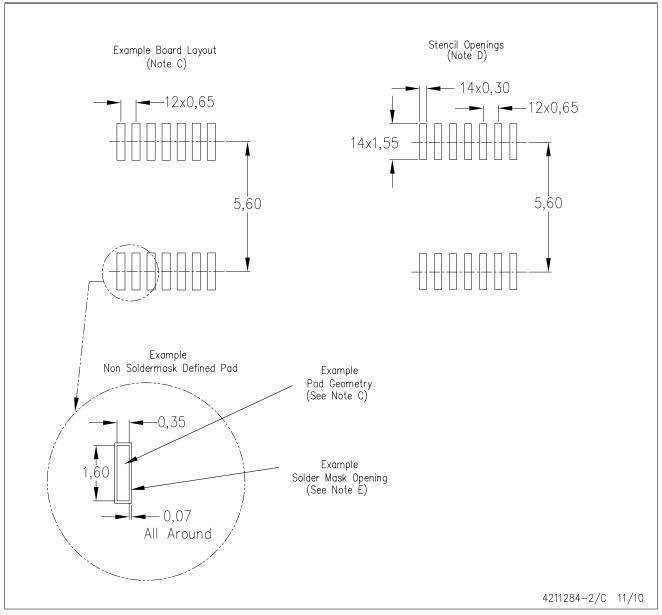

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com

TI E2E Community Home Page