
© July 2010 Altera Corporation

NII52005-10.0.0
7. Developing Device Drivers for the
Hardware Abstraction Layer
Introduction
Embedded systems typically have application-specific hardware features that require
custom device drivers. This chapter describes how to develop device drivers and
integrate them with the hardware abstraction layer (HAL).

This chapter also describes how to develop software packages for use with HAL
board support packages (BSPs). The process of integrating a software package with
the HAL is nearly identical with the process for integrating a device driver.

This chapter contains the following sections:

■ “Development Flow for Creating Device Drivers” on page 7–2

■ “SOPC Builder Concepts” on page 7–3

■ “Accessing Hardware” on page 7–3

■ “Creating Drivers for HAL Device Classes” on page 7–5

■ “Creating a Custom Device Driver for the HAL” on page 7–16

■ “Integrating a Device Driver in the HAL” on page 7–17

■ “Reducing Code Footprint” on page 7–29

■ “Namespace Allocation” on page 7–31

■ “Overriding the Default Device Drivers” on page 7–32

Confine direct interaction with the hardware to device driver code. In general, the
best practice is to keep most of your program code free of low-level access to the
hardware. Wherever possible, use the high-level HAL application program interface
(API) functions to access hardware. This makes your code more consistent and more
portable to other Nios® II systems that might have different hardware configurations.

When you create a new driver, you can integrate the driver with the HAL framework
at one of the following two levels:

■ Integration in the HAL API

■ Peripheral-specific API

1 As an alternative to creating a driver, you can compile the device-specific code as a
user library, and link it with the application. This approach is workable if the
device-specific code is independent of the BSP, and does not require any of the extra
services offered by the BSP, such as the ability to add definitions to the system.h file.

Integration in the HAL API
Integration in the HAL API is the preferred option for a peripheral that belongs to one
of the HAL generic device model classes, such as character-mode or direct memory
access (DMA) devices.
Nios II Software Developer’s Handbook
Preliminary

7–2 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Development Flow for Creating Device Drivers
f For descriptions of the HAL generic device model classes, refer to the Overview of the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

For integration in the HAL API, you write device access functions as specified in this
chapter, and the device becomes accessible to software through the standard HAL
API. For example, if you have a new LCD screen device that displays ASCII
characters, you write a character-mode device driver. With this driver in place,
programs can call the familiar printf() function to stream characters to the LCD
screen.

Peripheral-Specific API
If the peripheral does not belong to one of the HAL generic device model classes, you
need to provide a device driver with an interface that is specific to the hardware
implementation. In this case, the API to the device is separate from the HAL API.
Programs access the hardware by calling the functions you provide, not the HAL API.

The up-front effort to implement integration in the HAL API is higher, but you gain
the benefit of the HAL and C standard library API to manipulate devices.

For details about integration in the HAL API, refer to “Integrating a Device Driver in
the HAL” on page 7–17.

All the other sections in this chapter apply to integrating drivers in the HAL API and
creating drivers with a peripheral-specific API.

1 Although C++ is supported for programs based on the HAL, HAL drivers can not be
written in C++. Restrict your driver code to either C or assembly language. C is
preferred for portability.

Before You Begin
This chapter assumes that you are familiar with C programming for the HAL.

f Refer to the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook for information you need before reading this
chapter.

1 This chapter uses the variable <Altera installation> to represent the location where the
Altera® Complete Design Suite is installed. On a Windows system, by default, that
location is c:/altera/<version number>.

Development Flow for Creating Device Drivers
The steps to develop a new driver for the HAL depend on your device details.
However, the following generic steps apply to all device classes.

1. Create the device header file that describes the registers. This header file might be
the only interface required.

2. Implement the driver functionality.

3. Test from main().
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–3
SOPC Builder Concepts
4. Proceed to the final integration of the driver in the HAL environment.

5. Integrate the device driver in the HAL framework.

SOPC Builder Concepts
This section discusses basic concepts of the Altera SOPC Builder hardware design tool
that enhance your understanding of the driver development process. You can develop
Nios II device drivers without using SOPC Builder.

The Relationship between system.h and SOPC Builder
The system.h header file provides a complete software description of the Nios II
system hardware, and is a fundamental part of developing drivers. Because drivers
interact with hardware at the lowest level, it is worth mentioning the relationship
between system.h and SOPC Builder that generates the Nios II processor system
hardware. Hardware designers use SOPC Builder to specify the architecture of the
Nios II processor system and integrate the necessary peripherals and memory.
Therefore, the definitions in system.h, such as the name and configuration of each
peripheral, are a direct reflection of design choices made in SOPC Builder.

f For more information about the system.h header file, refer to the Developing Programs
Using the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook.

Using SOPC Builder for Optimal Hardware Configuration
If you find less-than-optimal definitions in system.h, remember that you can modify
the contents of system.h by changing the underlying hardware with SOPC Builder.
Before you write a device driver to accommodate imperfect hardware, it is worth
considering whether the hardware can be improved easily with SOPC Builder.

Components, Devices, and Peripherals
SOPC Builder uses the term “component” to describe hardware modules included in
the system. In the context of Nios II software development, SOPC Builder
components are devices, such as peripherals or memories. In the following sections,
“component” is used interchangeably with “device” and “peripheral” when the
context is closely related to SOPC Builder.

Accessing Hardware
Software accesses the hardware with macros that abstract the memory-mapped
interface to the device. This section describes the macros that define the hardware
interface for each device.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

7–4 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Accessing Hardware
All SOPC Builder components provide a directory that defines the device hardware
and software. For example, each component provided in the Quartus® II software has
its own directory in the <Altera installation>/ip/altera/sopc_builder_ip directory.
Many components provide a header file that defines their hardware interface. The
header file is named <component name>_regs.h, included in the inc subdirectory for
the specific component. For example, the Altera-provided JTAG UART component
defines its hardware interface in the file <Altera installation>/ip/altera/
sopc_builder_ip/altera_avalon_jtag_uart/inc/altera_avalon_jtag_uart_regs.h.

The _regs.h header file defines the following access macros for the component:

■ Register access macros that provide a read and/or write macro for each register in
the component that supports the operation. The macros are:

■ IORD_<component name>_<register name>
(<component base address>)

■ IOWR_<component name>_<register name>
(<component base address>, <data>)

For example, altera_avalon_jtag_uart_regs.h defines the following macros:

■ IORD_ALTERA_AVALON_JTAG_UART_DATA()

■ IOWR_ALTERA_AVALON_JTAG_UART_DATA()

■ IORD_ALTERA_AVALON_JTAG_UART_CONTROL()

■ IOWR_ALTERA_AVALON_JTAG_UART_CONTROL()

■ Register address macros that return the physical address for each register in a
component. The address register returned is the component’s base address + the
specified register offset value. These macros are named
IOADDR_<component name>_<register name> (<component base address>).

For example, altera_avalon_jtag_uart_regs.h defines the following macros:

■ IOADDR_ALTERA_AVALON_JTAG_UART_DATA()

■ IOADDR_ALTERA_AVALON_JTAG_UART_CONTROL()

Use these macros only as parameters to a function that requires the specific
address of a data source or destination. For example, a routine that reads a stream
of data from a particular source register in a component might require the physical
address of the register as a parameter.

■ Bit-field masks and offsets that provide access to individual bit-fields in a register.
These macros have the following names:

■ <component name>_<register name>_<name of field>_MSK—A bit-mask of the
field

■ <component name>_<register name>_<name of field>_OFST—The bit offset of the
start of the field

For example, ALTERA_AVALON_UART_STATUS_PE_MSK and
ALTERA_AVALON_UART_STATUS_PE_OFST access the pe field of the status
register.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–5
Creating Drivers for HAL Device Classes
Access a device’s registers only with the macros defined in the _regs.h file. You must
use the register access functions to ensure that the processor bypasses the data cache
when reading and or writing the device. Do not use hard-coded constants, because
they make your software susceptible to changes in the underlying hardware.

If you are writing the driver for a completely new hardware device, you must prepare
the _regs.h header file.

f For detailed information about developing device drivers for HAL BSPs, refer to
AN 459: Guidelines for Developing a Nios II HAL Device Driver. For a complete example
of the _regs.h file, refer to the component directory for any of the Altera-supplied
SOPC Builder components, such as <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart/inc. For more information about the effects of cache
management and device access, refer to the Cache and Tightly-Coupled Memory chapter
of the Nios II Software Developer’s Handbook.

Creating Drivers for HAL Device Classes
The HAL supports a number of generic device model classes. By writing a device
driver as described in this section, you describe to the HAL an instance of a specific
device that falls into one of its known device classes. This section defines a consistent
interface for driver functions so that the HAL can access the driver functions
uniformly.

f Generic device model classes are defined in the Overview of the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

The following sections define the API for the following classes of devices:

■ Character-mode devices

■ File subsystems

■ DMA devices

■ Timer devices used as system clock

■ Timer devices used as timestamp clock

■ Flash memory devices

■ Ethernet devices

The following sections describe how to implement device drivers for each class of
device, and how to register them for use in HAL-based systems.

Character-Mode Device Drivers
This section describes how to create a device instance and register a character device.

Create a Device Instance
For a device to be made available as a character mode device, it must provide an
instance of the alt_dev structure. The code in Example 7–1 defines the alt_dev
structure.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf

7–6 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
The alt_dev structure, defined in <Nios II EDS install path>/components/altera_hal/
HAL/inc/sys/alt_dev.h, is essentially a collection of function pointers. These functions
are called in response to application accesses to the HAL file system. For example, if
you call the function open() with a file name that corresponds to this device, the
result is a call to the open() function provided in this structure.

f For more information about open(), close(), read(), write(), lseek(),
fstat(), and ioctl(), refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

None of these functions directly modifies the global error status, errno. Instead, the
return value is the negation of the appropriate error code provided in errno.h.

For example, the ioctl() function returns -ENOTTY if it cannot handle a request
rather than set errno to ENOTTY directly. The HAL system routines that call these
functions ensure that errno is set accordingly.

The function prototypes for these functions differ from their application level
counterparts in that they each take an input file descriptor argument of type alt_fd*
rather than int.

A new alt_fd structure is created on a call to open(). This structure instance is then
passed as an input argument to all function calls made for the associated file
descriptor.

The following code defines the alt_fd structure:

typedef struct
{

alt_dev* dev;
void* priv;
int fd_flags;

} alt_fd;

where:

■ dev is a pointer to the device structure for the device being used.

■ fd_flags is the value of flags passed to open().

Example 7–1. alt_dev Structure

typedef struct {
alt_llist llist; /* for internal use */
const char* name;
int (*open) (alt_fd* fd, const char* name, int flags, int mode);
int (*close) (alt_fd* fd);
int (*read) (alt_fd* fd, char* ptr, int len);
int (*write) (alt_fd* fd, const char* ptr, int len);
int (*lseek) (alt_fd* fd, int ptr, int dir);
int (*fstat) (alt_fd* fd, struct stat* buf);
int (*ioctl) (alt_fd* fd, int req, void* arg);

} alt_dev;
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–7
Creating Drivers for HAL Device Classes
■ priv is a reserved, implementation-dependent argument, defined by the driver. If
the driver requires any special, non-HAL-defined values to be maintained for each
file or stream, you can store them in a data structure, and use priv maintains a
pointer to the structure. The HAL ignores priv.

Allocate storage for the data structure in your open() function (pointed to by the
alt_dev structure). Free the storage in your close() function.

1 To avoid memory leaks, ensure that the close() function is called when
the file or stream is no longer needed.

A driver is not required to provide all of the functions in the alt_dev structure. If a
given function pointer is set to NULL, a default action is used instead. Table 7–1 shows
the default actions for each of the available functions.

In addition to the function pointers, the alt_dev structure contains two other fields:
llist and name. llist is for internal use, and must always be set to the value
ALT_LLIST_ENTRY. name is the location of the device in the HAL file system and is
the name of the device as defined in system.h.

Register a Character Device
After you create an instance of the alt_dev structure, the device must be made
available to the system by registering it with the HAL and by calling the following
function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register.
The return value is zero upon success. A negative return value indicates that the
device cannot be registered.

After a device is registered with the HAL file system, you can access it through the
HAL API and the ANSI C standard library. The node name for the device is the name
specified in the alt_dev structure.

f For more information, refer to the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

Table 7–1. Default Behavior for Functions Defined in alt_dev

Function Default Behavior

open Calls to open() for this device succeed, unless the device was previously locked by a
call to ioctl() with req = TIOCEXCL.

close Calls to close() for a valid file descriptor for this device always succeed.

read Calls to read() for this device always fail.

write Calls to write() for this device always fail.

lseek Calls to lseek() for this device always fail.

fstat The device identifies itself as a character mode device.

ioctl ioctl() requests that cannot be handled without reference to the device fail.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

7–8 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
File Subsystem Drivers
A file subsystem device driver is responsible for handling file accesses beneath a
specified mount point in the global HAL file system.

Create a Device Instance
Creating and registering a file system is very similar to creating and registering a
character-mode device. To make a file system available, create an instance of the
alt_dev structure (refer to “Character-Mode Device Drivers” on page 7–5). The only
distinction is that the name field of the device represents the mount point for the file
subsystem. Of course, you must also provide any necessary functions to access the file
subsystem, such as read() and write(), similar to the case of the character-mode
device.

1 If you do not provide an implementation of fstat(), the default behavior returns
the value for a character-mode device, which is incorrect behavior for a file
subsystem.

Register a File Subsystem Device
You can register a file subsystem using the following function:

int alt_fs_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register.
A negative return value indicates that the file system cannot be registered.

After a file subsystem is registered with the HAL file system, you can access it
through the HAL API and the ANSI C standard library. The mount point for the file
subsystem is the name specified in the alt_dev structure.

f For more information, refer to the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

Timer Device Drivers
This section describes the system clock and timestamp drivers.

System Clock Driver
A system clock device model requires a driver to generate the periodic clock tick.
There can be only one system clock driver in a system. You implement a system clock
driver as an interrupt service routine (ISR) for a timer peripheral that generates a
periodic interrupt. The driver must provide periodic calls to the following function:

void alt_tick (void)

The expectation is that alt_tick() is called in exception context.

To register the presence of a system clock driver, call the following function:

int alt_sysclk_init (alt_u32 nticks)

The input argument nticks is the number of system clock ticks per second, which is
determined by your system clock driver. The return value of this function is zero on
success, and nonzero otherwise.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–9
Creating Drivers for HAL Device Classes
f For more information about writing interrupt service routines, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

Timestamp Driver
A timestamp driver provides implementations for the three timestamp functions:
alt_timestamp_start(), alt_timestamp(), and alt_timestamp_freq().
The system can only have one timestamp driver.

f For more information about using these functions, refer to the Developing Programs
Using the Hardware Abstraction Layer and HAL API Reference chapters of the Nios II
Software Developer’s Handbook.

Flash Device Drivers
This section describes how to create a flash driver and register a flash device.

Create a Flash Driver
Flash device drivers must provide an instance of the alt_flash_dev structure,
defined in sys/alt_flash_dev.h. The following code shows the structure:

struct alt_flash_dev
{

alt_llist llist; // internal use only
const char* name;
alt_flash_open open;
alt_flash_close close;
alt_flash_write write;
alt_flash_read read;
alt_flash_get_flash_info get_info;
alt_flash_erase_block erase_block;
alt_flash_write_block write_block;
void* base_addr;
int length;
int number_of_regions;
flash_region region_info[ALT_MAX_NUMBER_OF_FLASH_REGIONS];

};

The first parameter llist is for internal use, and must always be set to the value
ALT_LLIST_ENTRY. name is the location of the device in the HAL file system and is
the name of the device as defined in system.h.

The seven fields open to write_block are function pointers that implement the
functionality behind the application API calls to the following functions:

■ alt_flash_open_dev()

■ alt_flash_close_dev()

■ alt_write_flash()

■ alt_read_flash()

■ alt_get_flash_info()

■ alt_erase_flash_block()

■ alt_write_flash_block()
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7–10 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
where:

■ the base_addr parameter is the base address of the flash memory

■ length is the size of the flash in bytes

■ number_of_regions is the number of erase regions in the flash

■ region_info contains information about the location and size of the blocks in
the flash device

f For more information about the format of the flash_region structure, refer to
“Using Flash Devices” in the Developing Programs Using the Hardware Abstraction Layer
chapter of the Nios II Software Developer’s Handbook.

Some flash devices, such as common flash interface (CFI)-compliant devices, allow
you to read out the number of regions and their configuration at run time. For all
other flash devices, these two fields must be defined at compile time.

Register a Flash Device
After creating an instance of the alt_flash_dev structure, you must make the
device available to the HAL system by calling the following function:

int alt_flash_device_register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure to register.
The return value is zero upon success. A negative return value indicates that the
device cannot be registered.

DMA Device Drivers
The HAL models a DMA transaction as being controlled by two endpoint devices: a
receive channel and a transmit channel. This section describes the drivers for each
type of DMA channel separately.

f For a complete description of the HAL DMA device model, refer to “Using DMA
Devices” the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook.

The DMA device driver interface is defined in sys/alt_dma_dev.h.

DMA Transmit Channel
A DMA transmit channel is constructed by creating an instance of the
alt_dma_txchan structure, shown in Example 7–2.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–11
Creating Drivers for HAL Device Classes
Table 7–2 shows the available fields and their functions.

Both the space and send functions need to be defined. If the ioctl field is set to
null, calls to alt_dma_txchan_ioctl() return -ENOTTY for this device.

After creating an instance of the alt_dma_txchan structure, you must register the
device with the HAL system to make it available by calling the following function:

int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

The input argument dev is the device to register. The return value is zero on success,
or negative if the device cannot be registered.

Example 7–2. alt_dma_txchan Structure

typedef struct alt_dma_txchan_dev_s alt_dma_txchan_dev;
struct alt_dma_txchan_dev_s
{
 alt_llist llist;
 const char* name;
 int (*space) (alt_dma_txchan dma);
 int (*send) (alt_dma_txchan dma,
 const void* from,
 alt_u32 len,
 alt_txchan_done* done,
 void* handle);
 int (*ioctl) (alt_dma_txchan dma, int req, void* arg);
};

Table 7–2. Fields in the alt_dma_txchan Structure

Field Function

llist This field is for internal use, and must always be set to the value ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_txchan_open().
name is the name of the device as defined in system.h.

space A pointer to a function that returns the number of additional transmit requests that
can be queued to the device. The input argument is a pointer to the
alt_dma_txchan_dev structure.

send A pointer to a function that is called as a result of a call to the application API function
alt_dma_txchan_send(). This function posts a transmit request to the DMA
device. The parameters passed to alt_txchan_send() are passed directly to
send(). For a description of parameters and return values, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

ioctl This function provides device specific I/O control. Refer to sys/alt_dma_dev.h for a
list of the generic options that you might want your device to support.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7–12 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
DMA Receive Channel
A DMA receive channel is constructed by creating an instance of the
alt_dma_rxchan structure, shown in Example 7–3.

Table 7–3 shows the available fields and their functions.

The prepare() function must be defined. If the ioctl field is set to null, calls to
alt_dma_rxchan_ioctl() return -ENOTTY for this device.

After creating an instance of the alt_dma_rxchan structure, you must register the
device driver with the HAL system to make it available by calling the following
function:

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

The input argument dev is the device to register. The return value is zero on success,
or negative if the device cannot be registered.

Ethernet Device Drivers
The HAL generic device model for Ethernet devices provides access to the
NicheStack® TCP/IP Stack - Nios II Edition running on the MicroC/OS-II operating
system. You can provide support for a new Ethernet device by supplying the driver
functions that this section defines.

Example 7–3. alt_dma_rxchan Structure

typedef alt_dma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s
{
 alt_llist list;
 const char* name;
 alt_u32 depth;
 int (*prepare) (alt_dma_rxchan dma,
 void* data,
 alt_u32 len,
 alt_rxchan_done* done,
 void* handle);
 int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);
};

Table 7–3. Fields in the alt_dma_rxchan Structure

Field Function

llist This function is for internal use and must always be set to the value
ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_rxchan_open(). name
is the name of the device as defined in system.h.

depth The total number of receive requests that can be outstanding at any given time.

prepare A pointer to a function that is called as a result of a call to the application API function
alt_dma_rxchan_prepare(). This function posts a receive request to the
DMA device. The parameters passed to alt_dma_rxchan_prepare() are
passed directly to prepare(). For a description of parameters and return values,
refer to the HAL API Reference chapter of the Nios II Software Developer’s Handbook.

ioctl This is a function that provides device specific I/O control. Refer to sys/
alt_dma_dev.h for a list of the generic options that a device might wish to support.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–13
Creating Drivers for HAL Device Classes
Before you consider writing a device driver for a new Ethernet device, you need a
basic understanding of the Altera implementation of the NicheStack TCP/IP Stack
and its usages.

f For more information, refer to the Ethernet and the NicheStack TCP/IP Stack - Nios II
Edition chapter of the Nios II Software Developer’s Handbook.

The easiest way to write a new Ethernet device driver is to start with Altera’s
implementation for the SMSC lan91c111 device, and modify it to suit your Ethernet
media access controller (MAC). This section assumes you take this approach. Starting
from a known working example makes it easier for you to learn the most important
details of the NicheStack TCP/IP Stack implementation.

The source code for the lan91c111 driver is provided with the Quartus II software in
<Altera installation>/ip/altera/sopc_builder_ip/altera_avalon_lan91c111/UCOSII. For
the sake of brevity, this section refers to this directory as <SMSC path>. The source
files are in the <SMSC path>/src/iniche and <SMSC path>/inc/iniche directories.

A number of useful NicheStack TCP/IP Stack files are installed with the Nios II
Embedded Design Suite (EDS), under the <Nios II EDS install path>/components/
altera_iniche/UCOSII directory. For the sake of brevity, this chapter refers to this
directory as <iniche path>.

f For more information about the NicheStack TCP/IP Stack implementation, refer to
the NicheStack Technical Reference Manual, available on the Literature: Nios II Processor
page of the Altera website.

You need not edit the NicheStack TCP/IP Stack source code to implement a
NicheStack-compatible driver. Nevertheless, Altera provides the source code for your
reference. The files are installed with the Nios II EDS in the <iniche path> directory.
The Ethernet device driver interface is defined in <iniche path>/inc/alt_iniche_dev.h.

The following sections describe how to provide a driver for a new Ethernet device.

Provide the NicheStack Hardware Interface Routines
The NicheStack TCP/IP Stack architecture requires several network hardware
interface routines:

■ Initialize hardware

■ Send packet

■ Receive packet

■ Close

■ Dump statistics
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp

7–14 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
These routines are fully documented in the Porting Engineer Provided Functions chapter
of the NicheStack Technical Reference. The corresponding functions in the SMSC
lan91c111 device driver are shown in Table 7–4.

The NicheStack TCP/IP Stack system code uses the net structure internally to define
its interface to device drivers. The net structure is defined in net.h, in <iniche path>/
src/downloads/30src/h. Among other things, the net structure contains the following
things:

■ A field for the IP address of the interface

■ A function pointer to a low-level function to initialize the MAC device

■ Function pointers to low-level functions to send packets

Typical NicheStack code refers to type NET, which is defined as *net.

Provide *INSTANCE and *INIT Macros
To enable the HAL to use your driver, you must provide two HAL macros. The names
of these macros are based on the name of your network interface component,
according to the following templates:

■ <component name>_INSTANCE

■ <component name>_INIT

For examples, refer to ALTERA_AVALON_LAN91C111_INSTANCE and
ALTERA_AVALON_LAN91C111_INIT in <SMSC path>/inc/iniche/
altera_avalon_lan91c111_iniche.h, which is included in <iniche path>/inc/
altera_avalon_lan91c111.h.

You can copy altera_avalon_lan91c111_iniche.h and modify it for your own driver.
The HAL expects to find the *INIT and *INSTANCE macros in <component name>.h,
as discussed in “Header Files and alt_sys_init.c” on page 7–16. You can accomplish
this with a #include directive as in altera_avalon_lan91c111.h, or you can define the
macros directly in <component name>.h.

Table 7–4. SMSC lan91c111 Hardware Interface Routines

Prototype
function lan91c111 function File Notes

n_init() s91_init() smsc91x.c The initialization routine can install an ISR if applicable

pkt_send() s91_pkt_send() smsc91x.c

Packet receive
mechanism

s91_isr() smsc91x.c Packet receive includes three key actions:

■ pk_alloc()—Allocate a netbuf structure

■ putq()—Place netbuf structure on rcvdq

■ SignalPktDemux()—Notify the Internet
protocol (IP) layer that it can demux the packet

s91_rcv() smsc91x.c

s91_dma_rx_done() smsc_mem.c

n_close() s91_close() smsc91x.c

n_stats() s91_stats() smsc91x.c
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–15
Creating Drivers for HAL Device Classes
Your *INSTANCE macro declares data structures required by an instance of the MAC.
These data structures must include an alt_iniche_dev structure. The *INSTANCE
macro must initialize the first three fields of the alt_iniche_dev structure, as
follows:

■ The first field, llist, is for internal use, and must always be set to the value
ALT_LLIST_ENTRY.

■ The second field, name, must be set to the device name as defined in system.h. For
example, altera_avalon_lan91c111_iniche.h uses the C preprocessor’s ##
(concatenation) operator to reference the LAN91C111_NAME symbol defined in
system.h.

■ The third field, init_func, must point to your software initialization function, as
described in “Provide a Software Initialization Function”. For example,
altera_avalon_lan91c111_iniche.h inserts a pointer to
alt_avalon_lan91c111_init().

Your *INIT macro initializes the driver software. Initialization must include a call to
the alt_iniche_dev_reg() macro, defined in alt_iniche_dev.h. This macro
registers the device with the HAL by adding the driver instance to
alt_iniche_dev_list.

When your driver is included in a Nios II BSP project, the HAL automatically
initializes your driver by invoking the *INSTANCE and *INIT macros from its
alt_sys_init() function. Refer to “Header Files and alt_sys_init.c” on page 7–16
for further detail about the *INSTANCE and *INIT macros.

Provide a Software Initialization Function
The *INSTANCE() macro inserts a pointer to your initialization function in the
alt_iniche_dev structure, as described in “Provide *INSTANCE and *INIT
Macros” on page 7–14. Your software initialization function must perform at least the
following three tasks:

■ Initialize the hardware and verify its readiness

■ Finish initializing the alt_iniche_dev structure

■ Call get_mac_addr()

The initialization function must perform any other initialization your driver needs,
such as creation and initialization of custom data structures and ISRs.

f For details about the get_mac_addr() function, refer to the Ethernet and the
NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II Software Developer’s
Handbook.

For an example of a software initialization function, refer to
alt_avalon_lan91c111_init() in <SMSC path>/src/iniche/smsc91x.c.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

7–16 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating a Custom Device Driver for the HAL
Creating a Custom Device Driver for the HAL
This section describes how to provide appropriate files to integrate your device driver
in the HAL. The “Integrating a Device Driver in the HAL” section on page 7–17
describes the correct locations for the files.

Header Files and alt_sys_init.c
At the heart of the HAL is the autogenerated source file, alt_sys_init.c. This file
contains the source code that the HAL uses to initialize the device drivers for all
supported devices in the system. In particular, this file defines the alt_sys_init()
function, which is called before main() to initialize device drivers software packages,
and make them available to the program.

When you create the driver or software package, you specify in a Tcl script whether
you want the alt_sys_init() function to invoke your INSTANCE and INIT
macros. Refer to “Enabling Software Initialization” on page 7–24 for details.

Example 7–4 shows excerpts from an alt_sys_init.c file.

1 The remainder of this section assumes that you are using the alt_sys_init() HAL
initialization mechanism.

The Software Build Tools (SBT) creates alt_sys_init.c based on the header files
associated with each device driver and software package. For a device driver, the
header file must define the macros <component name>_INSTANCE and
<component name>_INIT.

Like a device driver, a software package provides an INSTANCE macro, which
alt_sys_init() invokes once. A software package header file can optionally
provide an INIT macro.

Example 7–4. Excerpt from an alt_sys_init.c File Performing Driver Initialization

#include "system.h"
#include "sys/alt_sys_init.h"

/*
* device headers
*/
#include "altera_avalon_timer.h"
#include "altera_avalon_uart.h"

/*
* Allocate the device storage
*/
ALTERA_AVALON_UART_INSTANCE(UART1, uart1);
ALTERA_AVALON_TIMER_INSTANCE(SYSCLK, sysclk);

/*
* Initialize the devices
*/
void alt_sys_init(void)
{

ALTERA_AVALON_UART_INIT(UART1, uart1);
ALTERA_AVALON_TIMER_INIT(SYSCLK, sysclk);

}

Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–17
Integrating a Device Driver in the HAL
For example, altera_avalon_jtag_uart.h must define the macros
ALTERA_AVALON_JTAG_UART_INSTANCE and
ALTERA_AVALON_JTAG_UART_INIT. The purpose of these macros is as follows:

■ The *_INSTANCE macro performs any required static memory allocation. For
drivers, *_INSTANCE is invoked once per device instance, so that memory can be
initialized on a per-device basis. For software packages, *_INSTANCE is invoked
once.

■ The *_INIT macro performs runtime initialization of the device driver or
software package.

In the case of a device driver, both macros take two input arguments:

■ The first argument, name, is the capitalized name of the device instance.

■ The second argument, dev, is the lower case version of the device name. dev is the
name given to the component in SOPC Builder at system generation time.

You can use these input parameters to extract device-specific configuration
information from the system.h file.

The name of the header file must be as follows:

■ Device driver: <hardware component class>.h. For example, if your driver targets the
altera_avalon_uart component, the file name is altera_avalon_uart.h.

■ Software packages <package name>.h. For example, if you create the software
package with the following command:

create_sw_package my_sw_package

the header file is called my_sw_package.h.

f For a complete example, refer to any of the Altera-supplied device drivers, such as the
JTAG UART driver in <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart.

1 For optimal project rebuild time, do not include the peripheral header in system.h. It
is included in alt_sys_init.c.

Device Driver Source Code
In addition to the header file, the component driver might need to provide compilable
source code, to be incorporated in the BSP. This source code is specific to the hardware
component, and resides in one or more C files (or assembly language files).

Integrating a Device Driver in the HAL
The Nios II SBT can incorporate device drivers and software packages supplied by
Altera, supplied by other third-party developers, or created by you. This section
describes how to prepare device drivers and software packages so the BSP generator
recognizes and adds them to a generated BSP.

You can take advantage of this service, whether you created a device driver for one of
the HAL generic device models, or you created a peripheral-specific device driver.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–18 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
1 The process required to integrate a device driver is nearly identical to that required to
develop a software package. The following sections describe the process for both.
Certain steps are not needed for software packages, as noted in the text.

Overview
To publish a device driver or a software package, you provide the following items:

■ A header file defining the package or driver interface

■ A Tcl script specifying how to add the package or driver to a BSP

The header file and Tcl script are described in the following sections.

Assumptions and Requirements
This section assumes that you are developing a device driver or software package for
eventual incorporation in a BSP. The driver or package is to be incorporated in the BSP
by an end user who has limited knowledge of the driver or package internal
implementation. To add your driver or package to a BSP, the end user must rely on the
driver or package settings that you create with the tools described in this section.

For a device driver or software package to work with the Nios II SBT, it must meet the
following criteria:

■ It must have a defining Tcl script. The Tcl script for each driver or software
package provides the Nios II SBT with a complete description of the driver or
software. This description includes the following information:

■ Name—A unique name identifying the driver or software package

■ Source files—The location, name, and type of each C/C++ or assembly
language source or header file

■ Associated hardware class (device drivers only)—The name of the hardware
peripheral class the driver supports

■ Version and compatibility information—The driver or package version, and
(for drivers) information about what device core versions it supports.

■ BSP type(s)—The supported operating system(s)

■ Settings—The visible parameters controlling software build and runtime
configuration

■ The Tcl script resides in the driver or software package root directory.

■ The Tcl script’s file name ends with _sw.tcl. Example: custom_ip_block_sw.tcl.

■ The root directory of the driver or software package is in one of the following
places:

■ In any directory included in the SOPC_BUILDER_PATH environment variable,
or in any directory located one level beneath such a directory. This approach is
recommended if your driver or software packages are installed in a
distribution you create.

■ In a directory named ip, one level beneath the Quartus II project directory
containing the design your BSP targets. This approach is recommended if your
driver or software package is used only once, in a specific hardware project.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–19
Integrating a Device Driver in the HAL
■ File names and directory structures conform to certain conventions, described in
“File Names and Locations” on page 7–20.

■ If your driver or software package uses the HAL autoinitialization mechanism
(alt_sys_init()), certain macros must be defined in a header file. For details
about this header file, refer to “Header Files and alt_sys_init.c” on page 7–16.

f For details about integrating a HAL device driver, refer to AN 459: Guidelines for
Developing a Nios II HAL Device Driver. For details of the commands you can use in a
driver Tcl script, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

The Nios II BSP Generator
This section describes the process by which the Nios II BSP generator adds device
drivers and software packages to your BSP. The Nios II BSP generator, a subset of the
Nios II SBT, is a combination of command utilities and scripts that enable you to
create and manage BSPs and their settings.

f For an overview of the Nios II SBT, refer to the Overview and Getting Started from the
Command Line chapters of the Nios II Software Developer’s Handbook.

Component Discovery
When you run any BSP generator utility, a library of available drivers and software
packages is populated.

The BSP generator locates software packages and drivers by inspecting a list of
known locations determined by the Altera Nios II EDS, Quartus II software, and
MegaCore® IP Library installers, as well as searching locations specified in certain
system environment variables.

The Nios II BSP tools identify drivers and software packages by locating and sourcing
Tcl scripts with file names ending in _sw.tcl in these locations.

1 For run-time efficiency, the BSP generator only looks at driver files that conform to the
criteria listed in this section.

After locating each driver and software package, the Nios II SBT searches for a
suitable driver for each hardware module in the SOPC Builder system (mastered by
the Nios II processor that the BSP is generated for), as well as software packages that
the BSP creator requested.

Device Driver Versions
In the case of device drivers, the highest version of driver that is compatible with the
associated hardware peripheral is added to the BSP, unless specified otherwise by the
device driver management commands.

f For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an459.pdf

7–20 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
Device Driver and Software Package Inclusion
The BSP generator adds software packages to the BSP if they are specifically
requested during BSP generation, with the enable_sw_package command.

f For further details, refer to “Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

If no specific device driver is requested, and no compatible device driver is located for
a particular hardware module, the BSP generator issues an informative message
visible in either the debug or verbose generation output. This behavior is normal for
many types of hardware in the SOPC Builder system, such as memory devices, that
do not have device drivers. If a software package or specific driver is requested and
cannot be located, an error is generated and BSP generation or settings update halts.

Creating a Tcl script allows you to add extra definitions in the system.h file, enable
automatic driver initialization through the alt_sys_init.c structure, and enable the
Nios II SBT to control any extra parameters that might exist.

With the Tcl software definition files in place, the SBT reads in the Tcl file and
populate the makefiles and other support files accordingly.

When the Nios II SBT adds each driver or software package to the system, it uses the
data in the Tcl script defining the driver or software package to control each file
copied in to the BSP. This rule also affects generated BSP files such as the BSP
Makefile, public.mk, system.h, and the BSP settings and summary HTML files.

When you create a new software project, the Nios II SBT generates the contents of
alt_sys_init.c to match the specific hardware contents of the SOPC Builder system.

File Names and Locations
As described in “The Nios II BSP Generator” on page 7–19, the Nios II build tools find
a device driver or software package by locating a Tcl script with the file name ending
in _sw.tcl, and sourcing it.

Each peripheral in a Nios II system is associated with a specific SOPC Builder
component directory. This directory contains a file defining the software interface to
the peripheral. Refer to “Accessing Hardware” on page 7–3.

To enable the SBT to find your component device driver, place the Tcl script in a
directory named ip under your hardware project directory.

Figure 7–1 illustrates a file hierarchy suitable for the Nios II SBT. This file hierarchy is
located in the <Altera installation>/ip/altera/sopc_builder_ip directory. This example
assumes a device driver supporting a hardware component named
custom_component.

Source Code Discovery

You use Tcl scripts to specify the location of driver source files. For further details,
refer to “The Nios II BSP Generator” on page 7–19.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–21
Integrating a Device Driver in the HAL
Driver and Software Package Tcl Script Creation
This section discusses writing a Tcl script to describe your software package or driver.
The exact contents of the Tcl script depends on the structure and complexity of your
driver or software. For many simple device drivers, you need only include a few
commands. For more complex software, the Nios II SBT provides powerful features
that give the BSP end user control of your software or driver’s operation.

f The Tcl command and argument descriptions in this section are not exhaustive. For a
detailed explanation of each command and all arguments, refer to the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

For a reference in creating your own driver or software Tcl files, you can also view the
driver and software package Tcl scripts included with the Nios II EDS and the
MegaCore IP library. These scripts are in the <Nios II EDS install path>/components
and <MegaCore IP library install path>/sopc_builder_ip folders, respectively.

Figure 7–1. Example Device Driver File Hierarchy and Naming

SOPC Builder generation files

custom_component_sw.tcl

custom_component_regs.h

HAL
Contains software files required to integrate the device with the Nios II hardware
abstraction layer. Files in this directory pertain specifically to the HAL.

inc

custom_component

inc
Contains header file(s) that define the device's hardware interfaces. Contents in
this directory are not HAL-specific, and apply to a driver, regardless of whether
it is based on the HAL, MicroC/OS-II, or any other RTOS environment.

custom_component.h

Additional header files

src

component.mk

driver_source_file.c

Additional source files
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–22 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
Tcl Command Walkthrough for a Typical Driver or Software Package
The Tcl script excerpts in this section describe a typical device driver or software
package.

The example in this section creates a device driver for a hardware peripheral whose
SOPC Builder component class name is my_custom_component. The driver
supports both HAL and MicroC/OS-II BSP types. It has a single C source file (.c) and
two C header files (.h), organized as in the example in Figure 7–1.

Creating and Naming the Driver or Package

The first command in any driver or software package Tcl script must be the
create_driver or create_sw_package command. The remaining commands
can be in any order. Use the appropriate create command only once per Tcl file.
Choose a unique driver or package name. For drivers, Altera recommends appending
_driver to the associated hardware class name. The following example illustrates
this convention.

create_driver my_custom_component_driver

Identifying the Hardware Component Class

Each driver must identify the hardware component class the driver is associated with
in the set_sw_property command’s hw_class_name argument. The following
example associates the driver with a hardware class called my_custom_component:

set_sw_property hw_class_name my_custom_component

1 The set_sw_property command accepts several argument types. Each call to
set_sw_property sets or overwrites a property to the value specified in the second
argument.

f For further information about the set_sw_property command, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

The hw_class_name argument does not apply to software packages.

If you are creating your own driver to use in place of an existing one (for example, a
custom UART driver for the altera_avalon_uart component), specify a driver
name different from the standard driver. The Nios II SBT uses your driver only if you
specify it explicitly.

f For further details, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Choose a name for your driver or software package that does not conflict with other
Altera-supplied software or IP, or any third-party software or IP installed on your
host system. The BSP generator uses the name you specify to look up the software
package or driver during BSP creation. If the Nios II SBT finds multiple compatible
drivers or software packages with the same name, it might pick any of them.

If you intend to distribute your driver or software package, Altera recommends
prefixing all names with your organization’s name.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–23
Integrating a Device Driver in the HAL
Setting the BSP Type

You must specify each operating system (or BSP type) that your driver or software
package supports. Use the add_sw_property command’s supported_bsp_type
argument to specify each compatible operating system. In most cases, a driver or
software package supports both Altera HAL (hal) and Micrium MicroC/OS-II
(ucosii) BSP types, as in the following example:

add_sw_property supported_bsp_type hal
add_sw_property supported_bsp_type ucosii

1 The add_sw_property command accepts several argument types. Each call to
add_sw_property adds the final argument to the property specified in the second
argument.

1 Support for additional operating system and BSP types is not present in this release of
the Nios II SBT.

Specifying an Operating System

Many drivers and software packages do not require any particular operating system.
However, you can structure your software to provide different source files depending
on the operating system used.

If your driver or software has different source files, paths, or settings that depend on
the operating system used, write a Tcl script for each variant of the driver or software
package. Each script must specify the same software package or driver name in the
create_driver or create_sw_package command, and same hw_class_name
in the case of device drivers. Each script must specify only the files, paths, and other
settings that pertain to that operating system. During BSP generation, only drivers or
software packages that specify compatibility with the selected operating system (OS)
type are eligible to add to the BSP.

Specifying Source Files

Using the Tcl command interface, you must specify each source file in your driver or
software package that you want in the generated BSP. The commands discussed in
this section add driver source files and specify their location in the file system and
generated BSP.

The add_sw_property command’s c_source and asm_source arguments add a
single .c or Nios II assembly language source file (.s or .S) to your driver or software
package. You must express path information to the source relative to the driver root
(the location of the Tcl file). add_sw_property copies source files to BSPs that
incorporate the driver, using the path information specified, and adds them to source
file list in the generated BSP makefile. When you build the BSP using make, the driver
source files are compiled as follows:

add_sw_property c_source HAL/src/my_driver.c
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–24 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
The add_sw_property command’s include_source argument adds a single
header file in the path specified to the driver. The paths are relative to the driver root.
add_sw_property copies header files to the BSP during generation, using the path
information specified at generation time. It does not include header files in the
makefile.

add_sw_property include_source inc/my_custom_component_regs.h
add_sw_property include_source HAL/inc/my_custom_component.h

Specifying a Subdirectory

You can optionally specify a subdirectory in the generated BSP for your driver or
software package files using the bsp_subdirectory argument to
set_sw_property. All driver source and header files are copied to this directory,
along with any path or hierarchy information specified with each source or header
file. If no bsp_subdirectory is specified, your driver or software package is placed
under the drivers folder of the generated BSP. Set the subdirectory as follows:

set_sw_property bsp_subdirectory my_driver

1 If the path begins with the BSP type (e.g HAL or UCOSII), the BSP type is removed
and replaced with the value of the bsp_subdirectory property.

Enabling Software Initialization

If your driver or software package uses the HAL autoinitialization mechanism, your
source code includes INSTANCE and INIT macros, to create storage for each driver
instance, and to call any initialization routines. The generated alt_sys_init.c file
invokes these macros, which must be defined in a header file named
<hardware component class>.h.

For further details, refer to “Provide *INSTANCE and *INIT Macros” on page 7–14.

To support this functionality in Nios II BSPs, you must set the set_sw_property
command’s auto_initialize argument to true using the following Tcl command:

set_sw_property auto_initialize true

If you do not turn on this attribute, alt_sys_init.c does not invoke the INIT and
INSTANCE macros.

Adding Include Paths

By default, the generated BSP Makefile and public.mk add include paths to find
header files in /inc or <BSP type>/inc folders.

You might need to set up a header file directory hierarchy to logically organize your
code. You can add additional include paths to your driver or software package using
the add_sw_property command’s include_directory argument as follows:

add_sw_property include_directory UCOSII/inc/protocol/h

1 If the path begins with the BSP type (e.g HAL or UCOSII), the BSP type is removed
and replaced with the value of the bsp_subdirectory property.

Additional include paths are added to the preprocessor flags in the BSP public.mk
file. These preprocessor flags allow BSP source files, as well as application and user
library source files that reference the BSP, to find the include path while each source
file is compiled.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–25
Integrating a Device Driver in the HAL
1 Adding additional include paths is not required if your source code includes header
files with explicit path names. You can also specify the location of the header files with
a #include directive similar to the following:

#include "protocol/h/<filename>"

Version Compatibility

Your device driver or software package can optionally specify versioning information
through the Tcl command interface. The driver and software package Tcl commands
specifying versioning information allow the following functionality:

■ You can request a specific version of your driver or software package with BSP
settings.

■ You can make updates to your device driver and specify that the driver is still
compatible with a minimum hardware class version, or specific hardware class
versions. This facility is especially useful in situations in which a hardware design
is stable and you foresee making software updates over time.

The <version> argument in each of the following versioning-related commands can be
a string containing numbers and characters. Examples of version strings are 8.0,
5.1.1, 6.1, and 6.1sp1. The . character is a separator. The BSP generator compares
versions against each other to determine if one is more recent than the other, or if two
are equal, by successively comparing the strings between each separator. Thus, 2.1 is
greater than 2.0, and 2.1sp1 is greater than 2.1. Two versions are equal if their
version assignment strings are identical.

Use the version argument of set_sw_property to assign a version to your driver
or software package. If you do not assign a version to your software or device driver,
the version of the Nios II EDS installation (containing the Nios II BSP commands
being executed) is set for your driver or software package:

set_sw_property version 7.1

Device drivers (but not software packages) can use the
min_compatible_hw_version and specific_compatible_hw_version
arguments to establish compatibility with their associated hardware class, as follows:

set_sw_property min_compatible_hw_version 5.0.1add_sw_property
specific_compatible_hw_version 6.1sp1

You can add multiple specific compatible versions. This functionality allows you to
roll out a new version of a device driver that tracks changes supporting a hardware
peripheral change.

For device drivers, if no compatible version information is specified, the version of the
device driver must be equal to the associated hardware class. Thus, if you do not wish
to use this feature, Altera recommends setting the min_compatible_hw_version
of your driver to the lowest version of the associated hardware class your driver is
compatible with.

Creating Settings for Device Drivers and Software Packages
The BSP generator allows you to publish settings for individual device drivers and
software packages. These settings are visible and can be modified by the BSP user, if
the BSP includes your driver or software package. Use the Tcl command interface to
create settings.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–26 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
The Tcl command that publishes settings is especially useful if your driver or software
package has build or runtime options that are normally specified with #define
statements or makefile definitions at software build time. Settings can also add
custom variable declarations to the BSP Makefile.

Settings affect the generated BSP in several ways:

■ Settings are added either to the BSP system.h or public.mk, or to the BSP makefile
as a variable.

■ Settings are stored in the BSP settings file, named with hierarchy information to
prevent namespace collision.

■ A default value of your choice is assigned to the setting so that the end user of the
driver or package does not need to explicitly specify the setting when creating or
updating a BSP.

■ Settings are displayed in the BSP summary.html document, along with description
text of your choice.

Use the add_sw_setting Tcl command to add a setting. To specify the details,
add_sw_setting requires each of the following arguments, in the order shown:

1. type—The data type, which controls formatting of the setting’s value assignment
in the appropriate generated file.

2. destination—The destination file in the BSP.

3. displayName—The name that is used to identify the setting when changing BSP
settings or viewing the BSP summary.html document

4. identifier—Conceptually, this argument is the macro defined in a C language
definition (the text immediately following #define), or the name of a variable in
a makefile.

5. value—A default value assigned to the setting if the BSP user does not manually
change it

6. description—Descriptive text, shown in the BSP summary.html document.

Data Types

Several setting data types are available, controlled by the type argument to
add_sw_setting. They correspond to the data types you can express as #define
statements or values concatenated to makefile variables. The specific setting type
depends on your software’s structure or BSP build needs. The available data types,
and their typical uses, are shown in Table 7–5.

Table 7–5. Data Type Settings (Part 1 of 2)

Data Type Setting Value Notes

Boolean definition boolean_define_only A definition that is generated when true, and
absent when false. Use a boolean definition in your
C source files with the #ifdef
<setting> ... #endif construct.

Boolean assignment boolean A definition assigned to 1 when true, 0 when false.
Use a boolean assignment in your C source files
with the #if <setting> ... #else ...
construct.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–27
Integrating a Device Driver in the HAL
Setting Destination Files

The destination argument of add_sw_setting specifies settings and their
assigned values. This argument controls the file to which the setting is saved in the
BSP. The BSP generator formats the setting’s assigned value based on the definition
file and type of setting. Table 7–6 shows possible values of the destination
argument.

1 Certain setting types are not compatible with the public.mk or Makefile destination
file types.

f For detailed information, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

Character character A definition with one character surrounded by
single quotation marks (')

Decimal number decimal_number A definition with an unquoted, unformatted
decimal number, such as 123. Useful for defining
values in software that, for example, might have a
configurable buffer size, such as
int buffer[SIZE];

Double precision
number

double A definition with a double-precision floating point
number such as 123.4

Floating point number float A definition with a single-precision floating point
number such as 234.5

Hexadecimal number hex_number A definition with a number prefixed with 0x, such
as 0x1000. Useful for specifying memory
addresses or bit masks

Quoted string quoted_string A definition with a string in quotes, such as
"Buffer"

Unquoted string unquoted_string A definition with a string not in quotes, such as
BUFFER

Table 7–6. Destination File Settings

Destination File Setting Value Notes

system.h system_h_define This destination file is recommended in most cases. Your
source code must use a #include <system.h>
statement to make the setting definitions available.
Settings appear as #define statements in system.h.

public.mk public_mk_define Definitions appear as -D statements in public.mk, in the
C preprocessor flags assembly. This setting type is
passed directly to the compiler during build and is visible
during compilation of application and libraries
referencing the BSP.

BSP makefile makefile_variable Settings appear as makefile variable assignments in the
BSP makefile.

Table 7–5. Data Type Settings (Part 2 of 2)

Data Type Setting Value Notes
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–28 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
Setting Display Name

The setting displayName controls what the end user of the driver or package (the
BSP developer) types to control the setting in their BSP. BSPs append the
displayName text after a . (dot) separator to your driver or software package’s name
(as defined in the create_driver or create_sw_package command). For
example, if your driver is named my_peripheral_driver and your setting’s
displayName is small_driver, BSPs with your driver have a setting
my_peripheral_driver.small_driver. Thus each driver and software package
has its own settings namespace.

Setting Generation Name

The setting generationName of add_sw_setting controls the physical name of
the setting in the generated BSP files. The physical name corresponds to the definition
being created in public.mk and system.h, or the make variable created in the BSP
Makefile. The generationName is commonly the text that your software uses in
conditionally-compiled code. For example, suppose your software creates a buffer as
follows:

unsigned int driver_buffer[MY_DRIVER_BUFFER_SIZE];

You can enter the exact text, MY_DRIVER_BUFFER_SIZE, in the generationName
argument.

Setting Default Value

The value argument of add_sw_setting holds the default value of your setting.
This value propagates to the generated BSP unless the end user of the driver or
package (the BSP developer) changes the setting’s assignment before BSP generation.

1 The value assigned to any setting, whether it is the default value in the driver or
software package Tcl script, or entered by the user configuring the BSP, must be
compatible with the selected setting.

f For details, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Setting Description

The description argument of add_sw_setting contains a brief description of the
setting. The description argument is required. Place quotation marks ("") around
the text of the description. The description text appears in the generated BSP
summary.html document.

Setting Creation Example

Example 7–5 implements a setting for a driver that has two variants of a function, one
implementing a small driver (minimal code footprint) and the other a fast driver
(efficient execution).
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–29
Reducing Code Footprint
In Example 7–5, a simple Boolean definition setting is added to your driver Tcl file.
This feature allows BSP users to control your driver through the BSP settings
interface. When users set the setting to true or 1, the BSP defines
MY_CUSTOM_DRIVER_SMALL in either system.h or the BSP public.mk file. When the
user compiles the BSP, your driver is compiled with the appropriate routine
incorporated in the object file. When a user disables the setting,
MY_CUSTOM_DRIVER_SMALL is not defined.

You add the MY_CUSTOM_DRIVER_SMALL setting to your driver as follows using the
add_sw_setting Tcl command:

add_sw_setting boolean_define_only system_h_define small_driver
MY_CUSTOM_DRIVER_SMALL false
"Enable the small implementation of the driver for my_peripheral"

1 Each Tcl command must reside on a single line of the Tcl file. This example is wrapped
due to space constraints.

f Each argument has several variants. For detailed usage and restrictions, refer to the
Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Reducing Code Footprint
The HAL provides several options for reducing the size, or footprint, of the BSP code.
Some of these options require explicit support from device drivers. If you need to
minimize the size of your software, consider using one or both of the following
techniques in your custom device driver:

■ Provide reduced footprint drivers. This technique usually reduces driver
functionality.

■ Support the lightweight device driver API. This technique reduces driver
overhead. It need not reduce functionality, but it might restrict your flexibility in
using the driver.

These techniques are discussed in the following sections.

Example 7–5. Supporting Driver Settings

#include "system.h"
#ifdef MY_CUSTOM_DRIVER_SMALL
int send_data(<args>)
{
// Small implementation
}
#else
int send_data(<args>)
{
// fast implementation
}
#endif
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–30 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Reducing Code Footprint
Provide Reduced Footprint Drivers
The HAL defines a C preprocessor macro named ALT_USE_SMALL_DRIVERS that
you can use in driver source code to provide alternate behavior for systems that
require a minimal code footprint. If ALT_USE_SMALL_DRIVERS is not defined, driver
source code implements a fully featured version of the driver. If the macro is defined,
the source code might provide a driver with restricted functionality. For example a
driver might implement interrupt-driven operation by default, but polled (and
presumable smaller) operation if ALT_USE_SMALL_DRIVERS is defined.

When writing a device driver, if you choose to ignore the value of
ALT_USE_SMALL_DRIVERS, the same version of the driver is used regardless of the
definition of this macro.

You can enable ALT_USE_SMALL_DRIVERS in a BSP with the
hal.enable_reduced_device_drivers BSP setting.

f For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Support the Lightweight Device Driver API
The lightweight device driver API allows you to minimize the overhead of
character-mode device drivers. It does this by removing the need for the alt_fd file
descriptor table, and the alt_dev data structure required by each driver instance.

If you want to support the lightweight device driver API on a character-mode device,
you need to write at least one of the lightweight character-mode functions listed in
Table 7–7. Implement the functions needed by your software. For example, if you only
use the device for stdout, you only need to implement the
<component class>_write() function.

To support the lightweight device driver API, name your driver functions based on
the component class name, as shown in Table 7–7.

When you build your BSP with ALT_USE_DIRECT_DRIVERS enabled, instead of
using file descriptors, the HAL accesses your drivers with the following macros:

■ ALT_DRIVER_READ(instance, buffer, len, flags)

■ ALT_DRIVER_WRITE(instance, buffer, len, flags)

■ ALT_DRIVER_IOCTL(instance, req, arg)

Table 7–7. Driver Functions for Lightweight Device Driver API

Function Purpose Example (1)

<component class>_read() Implements character-mode
read functions

altera_avalon_jtag_uart_read()

<component class>_write() Implements character-mode
write functions

altera_avalon_jtag_uart_write()

<component class>_ioctl() Implements
device-dependent functions

altera_avalon_jtag_uart_ioctl()

(1) Based on component altera_avalon_jtag_uart
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–31
Namespace Allocation
These macros are defined in <Nios II EDS install path>/components/altera_hal/HAL/
inc/sys/alt_driver.h.

These macros, together with the system-specific macros that the Nios II SBT creates in
system.h, generate calls to your driver functions. For example, with lightweight
drivers turned on, printf() calls the HAL write() function, which directly calls
your driver’s <component class>_write() function, bypassing file descriptors.

You can enable ALT_USE_DIRECT_DRIVERS in a BSP with the
hal.enable_lightweight_device_driver_api BSP setting.

f For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

You can also take advantage of the lightweight device driver API by invoking
ALT_DRIVER_READ(), ALT_DRIVER_WRITE() and ALT_DRIVER_IOCTL() in
your application software. To use these macros, include the header file sys/
alt_driver.h. Replace the instance argument with the device instance name macro
from system.h; or if you are confident that the device instance name will never
change, you can use a literal string, for example custom_uart_0.

Another way to use your driver functions is to call them directly, without macros. If
your driver includes functions other than <component class>_read(),
<component class>_write() and <component class>_ioctl(), you must
call those functions directly from your application.

Namespace Allocation
To avoid conflicting names for symbols defined by devices in the SOPC Builder
system, all global symbols need a defined prefix. Global symbols include global
variable and function names. For device drivers, the prefix is the name of the SOPC
Builder component followed by an underscore. Because this naming can result in long
strings, an alternate short form is also permitted. This short form is based on the
vendor name, for example alt_ is the prefix for components published by Altera. It is
expected that vendors test the interoperability of all components they supply.

For example, for the altera_avalon_jtag_uart component, the following
function names are valid:

■ altera_avalon_jtag_uart_init()

■ alt_jtag_uart_init()

The following names are invalid:

■ avalon_jtag_uart_init()

■ jtag_uart_init()

As source files are located using search paths, these namespace restrictions also apply
to file names for device driver source and header files.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–32 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Overriding the Default Device Drivers
Overriding the Default Device Drivers
All SOPC Builder components can elect to provide a HAL device driver. Refer to
“Integrating a Device Driver in the HAL” on page 7–17. However, if the driver
supplied with a component is inappropriate for your application, you can override
the default driver by supplying a different driver.

In the Nios II SBT for Eclipse, you can use the BSP Editor to specify a custom driver.

f For information about selecting device drivers, refer to “Using the BSP Editor” in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

On the command line, you specify a custom driver with the following BSP Tcl
command:

set_driver <driver name> <component name>

For example, if you are using the nios2-bsp command, you replace the default driver
for uart0 with a driver called custom_driver as follows:

nios2-bsp hal my_bsp --cmd set_driver custom_driver uart0r

Referenced Documents
This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook

■ Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

■ Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

■ Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook

■ Overview of the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook

■ Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II
Software Developer’s Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

■ AN 459: Guidelines for Developing a Nios II HAL Device Driver

■ NicheStack Technical Reference Manual, available on the Literature: Nios II Processor
page of the Altera website
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–33
Document Revision History
Document Revision History
Table 7–8 shows the revision history for this document.

Table 7–8. Document Revision History

Date &
Document

Version Changes Made Summary of Changes

July 2010

v10.0.0

Maintenance release

November 2009

v9.1.0

Removed Nios II IDE-specific information Introduced the Nios II
Software Build Tools for
Eclipse™

March 2009

v9.0.0

■ Reorganized and updated information and terminology to clarify role
of Nios II Software Build Tools.

■ Incorporated information about Tcl-based device drivers and
software packages, formerly in Using the Nios II Software Build
Tools.

■ Described use of the INSTANCE macro in software packages.

■ Corrected minor typographical errors.

Tcl-based device drivers and
software packages

May 2008

v8.0.0

Maintenance release

October 2007

v7.2.0

Added documentation for HAL device driver development with the
Nios II Software Build Tools.

—

May 2007

v7.1.0

■ Added table of contents to “Introduction” section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Maintenance release

November 2006

v6.1.0

■ Add section “Reducing Code Footprint”

■ Replace lwIP driver section with NicheStack TCP/IP Stack driver
section

Lightweight device driver API
and minimal file I/O API;
NicheStack TCP/IP Stack

support.

May 2006

v6.0.0

Maintenance release

October 2005

v5.1.0

Added IOADDR_* macro details to section “Accessing Hardware”.

May 2005

v5.0.0

Updated reference to version of lwIP from 0.7.2 to 1.1.0.

December 2004

v1.1

Updated reference to version of lwIP from 0.6.3 to 0.7.2.

May 2004

v1.0

Initial release
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–34 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Document Revision History
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

	7. Developing Device Drivers for the Hardware Abstraction Layer
	Introduction
	Integration in the HAL API
	Peripheral-Specific API
	Before You Begin

	Development Flow for Creating Device Drivers
	SOPC Builder Concepts
	The Relationship between system.h and SOPC Builder
	Using SOPC Builder for Optimal Hardware Configuration
	Components, Devices, and Peripherals

	Accessing Hardware
	Creating Drivers for HAL Device Classes
	Character-Mode Device Drivers
	Create a Device Instance
	Register a Character Device

	File Subsystem Drivers
	Create a Device Instance
	Register a File Subsystem Device

	Timer Device Drivers
	System Clock Driver
	Timestamp Driver

	Flash Device Drivers
	Create a Flash Driver
	Register a Flash Device

	DMA Device Drivers
	DMA Transmit Channel
	DMA Receive Channel

	Ethernet Device Drivers
	Provide the NicheStack Hardware Interface Routines
	Provide *INSTANCE and *INIT Macros
	Provide a Software Initialization Function

	Creating a Custom Device Driver for the HAL
	Header Files and alt_sys_init.c
	Device Driver Source Code

	Integrating a Device Driver in the HAL
	Overview
	Assumptions and Requirements
	The Nios II BSP Generator
	Component Discovery
	Device Driver Versions
	Device Driver and Software Package Inclusion

	File Names and Locations
	Source Code Discovery

	Driver and Software Package Tcl Script Creation
	Tcl Command Walkthrough for a Typical Driver or Software Package
	Creating and Naming the Driver or Package
	Identifying the Hardware Component Class
	Setting the BSP Type
	Specifying an Operating System
	Specifying Source Files
	Specifying a Subdirectory
	Enabling Software Initialization
	Adding Include Paths
	Version Compatibility

	Creating Settings for Device Drivers and Software Packages
	Data Types
	Setting Destination Files
	Setting Display Name
	Setting Generation Name
	Setting Default Value
	Setting Description
	Setting Creation Example

	Reducing Code Footprint
	Provide Reduced Footprint Drivers
	Support the Lightweight Device Driver API

	Namespace Allocation
	Overriding the Default Device Drivers
	Referenced Documents
	Document Revision History

