
© July 2010 Altera Corporation Quartus II Handbook Version 10.0 Volume 4: SOPC Builder
 

10. SOPC Builder Component
Development Walkthrough

This chapter describes the parts of a custom SOPC Builder component and guides you 
through the process of creating an example custom component, integrating it into a 
system, and testing it in hardware.

This chapter is divided into the following sections:

■ “Component Development Flow” on page 10–2.

■ “Design Example: Checksum Hardware Accelerator” on page 10–4. This design 
example shows you how to develop a component with both Avalon® 
Memory-Mapped (Avalon-MM) master and slaves. 

■ “Sharing Components” on page 10–6. This section shows you how to use 
components in other systems, or share them with other designers.

■ “System Information Files (.sopcinfo)” on page 10–7.

SOPC Builder Components and the Component Editor
An SOPC Builder component is usually composed of the following four types of files:

■ HDL files—define the component’s functionality as hardware.

■ Hardware Component Description File (_hw.tcl) —describes the SOPC Builder 
related characteristics, such as interface behaviors. This file is created by the 
component editor.

■ C-language files—define the component register map and driver software to allow 
programs to control the component.

■ Software Component Description File (_sw.tcl) file—used by the software build 
tools to use and compile the component driver code.

The component editor guides you through the creation of your component. You can 
then instantiate the component in an SOPC Builder system and make connections in 
the same manner as other SOPC Builder components. You can also share your 
component with other designers.

For information about creating the _sw.tcl file, see the Developing Device Drivers for the 
Hardware Abstraction Layer chapter in the Nios II Software Developer’s Handbook.

Prerequisites
This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, refer to the Introduction to SOPC 
Builder chapter in volume 4 of the Quartus II Handbook. 

■ SOPC Builder components. For details, refer to the SOPC Builder Components 
chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon-MM interface.

QII54007-10.0.0

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf


10–2 Chapter 10: SOPC Builder Component Development Walkthrough
Hardware and Software Requirements

Quartus II Handbook Version 10.0 Volume 4: SOPC Builder © July 2010 Altera Corporation
 

Hardware and Software Requirements
To use the design example in this chapter, in addition to the current version of the 
Quartus II software and Nios II Embedded Design Suite, you must have the 
following:

■ Design files for the example design—A hyperlink to the design files appears next 
to the chapter, SOPC Builder Component Development Walkthrough, on the SOPC 
Builder literature page. 

■ Nios development board and an Altera® USB-BlasterTM download cable—You can 
use either of the following Nios development boards:

■ Stratix® II Edition, RoHS compliant version

■ Cyclone® II Edition

If you do not have a development board, you can follow the hardware development 
steps. You cannot download the complete system without a working board, but you 
can simulate the system.

f You can download the Quartus II Web Edition software and the Nios II EDS, 
Evaluation Edition for free from the Altera Download Center at www.altera.com. 

Component Development Flow
This section provides an overview of the development process for SOPC Builder 
components. 

Typical Design Steps
A typical development sequence for an SOPC Builder component includes the 
following items:

1. Specification and definition.

a. Define the functionality of the component.

b. Determine component interfaces, such as Avalon Memory-Mapped 
(Avalon-MM), Avalon Streaming (Avalon-ST), interrupt, or other interfaces.

c. Determine the component clocking requirements; what interfaces are 
synchronous to what clock inputs.

d. If you want a microprocessor to control the component, determine the interface 
to software, such as the register map.

2. Implement the component in VHDL or Verilog HDL.

http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com


Chapter 10: SOPC Builder Component Development Walkthrough 10–3
Component Development Flow

© July 2010 Altera Corporation Quartus II Handbook Version 10.0 Volume 4: SOPC Builder
 

3. Import the component into SOPC Builder.

a. Use the component editor to create a _hw.tcl file that describes the component.

b. Instantiate the component into an SOPC Builder system.

When importing an HDL file using the component editor, any parameter 
definitions that are dependent upon other defined parameters cause an error. 
Example 10–1 illustrates the declaration of a DEPTH parameter which is legal 
Verilog HDL syntax in the Quartus II software, but causes an error in the 
component editor syntax checker.

To avoid this error, use a localparam for the dependent parameter instead, as 
shown in Example 10–2. 

1 SOPC Builder only supports the VHDL port types std_logic and 
std_logic_vector.

4. Develop the software driver, which can occur in parallel with the hardware 
implementation. Create the component’s driver, including a C header file that 
defines the hardware-level register map for software. 

f For further details, see the Nios II Software Developer's Handbook.

5. Perform in-system testing, such as the following:

a. Test register-level accesses to the component in hardware or simulation using a 
microprocessor, such as the Nios II processor.

b. Performance benchmarking.

Hardware Design
As with any logic design process, the development of SOPC Builder component 
hardware begins after the specification phase. Creating the HDL design is often an 
iterative process, as you write and verify the HDL logic against the specification.

The architecture of a typical component consists of the following functional blocks:

■ Task logic—Implements the component's fundamental function. The task logic is 
design dependent.

■ Interface logic—Provides a standard way of providing data to or getting data from 
the components and of controlling the functioning of the components.

f For further details, refer to the Avalon Interface Specifications.

Example 10–1. DEPTH Parameter

parameter WIDTH = 32; 
parameter DEPTH = ((WIDTH == 32) ? 8 : 16);

Example 10–2. localparam Parameter

parameter WIDTH = 32; 
localparam DEPTH = ((WIDTH == 32)?8:16);

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf


10–4 Chapter 10: SOPC Builder Component Development Walkthrough
Design Example: Checksum Hardware Accelerator

Quartus II Handbook Version 10.0 Volume 4: SOPC Builder © July 2010 Altera Corporation
 

Figure 10–1 shows the top-level blocks of a checksum component, which includes 
both Avalon-MM master and slaves. 

f The work flow for developing SOPC Builder hardware, including how to decide upon 
and implement the register map, is described in the Using the Nios II Software Build 
Tools chapter in the Nios II Software Developer’s Handbook. Also, guidelines for 
developing device drivers is described in the Developing Device Drivers for the 
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Design Example: Checksum Hardware Accelerator
Altera has provided a checksum hardware accelerator design example to demonstrate 
the steps to create a component and instantiate it in a system. This design example is 
available for download from the Altera literature website. Included in the compressed 
download file is a readme.pdf that describes how to create and compile the hardware 
design, and describes how to use the checksum hardware accelerator in your design.

You can use the checksum algorithm in network applications where data integrity 
must be inspected by the receiving device. The checksum algorithm accumulates data 
with end-round-carry summation, which means that the carry bit from the 
accumulator is added to the least significant bit of the next input. After the data is 
accumulated, you can use the result to verify the data integrity of the data buffer. 
Because the checksum algorithm operates over a data buffer, you can implement it 
more efficiently with a pipelined read master. A pipelined read master continuously 
posts read transactions minimizing the effects of the memory read latency. The 
checksum accelerator can read data and calculate the checksum result every clock 
cycle, which you cannot do with a general purpose processor.

The checksum hardware accelerator requires information from a host processor such 
as the buffer base address, buffer length, and various control signals. As a result, the 
hardware accelerator exposes an Avalon-MM slave interface so that a host processor 
can control the read master operation. The host processor also accesses the checksum 
result from the slave interface. Each piece of information sent or read by the host 
processor is accessed separately in the register file implemented with the slave 
interface. For example, the status and control signals are implemented as separate 
registers because they contain information used for different purposes and have 
different access capabilities.

Hardware accelerators can operate in parallel with a host processor; consequently, 
adding an interrupt sender interface to the hardware accelerator increases system 
performance. While the accelerator is operating on a buffer, the host processor can 
perform other tasks such as preparing another buffer for transmission. The interrupt 
is asserted after the buffer checksum is calculated. The host processor can be 
interrupted by the hardware accelerator to notify it that a checksum result has been 
calculated. The host processor can then read the checksum value and clear the 
interrupt by writing to the status register via the accelerator slave interface.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf


Chapter 10: SOPC Builder Component Development Walkthrough 10–5
Design Example: Checksum Hardware Accelerator

© July 2010 Altera Corporation Quartus II Handbook Version 10.0 Volume 4: SOPC Builder
 

Software Design
If you want a microprocessor to control your component, you must provide software 
files that define the software view of the component. At a minimum, you must define 
the register map for each Avalon-MM slave that is accessible to a processor. 

1 In the example checksum project, you can view an example of a software driver in the 
directory <projectdir>/ip/checksum_accelerator, which is the top level folder of the 
hardware and software for the custom checksum block.

Figure 10–1. Checksum Component with Avalon-MM Master and Slaves

Checksum Accelerator

Avalon-MM
Slave

Interface

irq

clk

reset

clk

reset

go
_s

tr
ob

e

re
ad

_a
dd

re
ss

[3
1.

.0
]

re
ad

_l
en

gt
h[

31
..0

]

transform_readdata[31..0]

transform_read

transform_data_available

transform_byte_lanes

checksum_result[15..0]

checksum_invert

checksum_clear
slave_byteenable[3..0]

slave_read

slave_readdata[31..0]

slave_write

slave_writedata[31..0]

slave_address[2..0]

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ricmaster_readdatavalid

master_waitrequest

master_byteenable[3..0]

master_read

master_readdata[31..0]

master_address[31..0]

Checksum
Transform

co
nt

ro
l_

irq

Avalon-MM
Master

Interface

Clock Input
Interface

Interrupt
Slave

Interface



10–6 Chapter 10: SOPC Builder Component Development Walkthrough
Sharing Components

Quartus II Handbook Version 10.0 Volume 4: SOPC Builder © July 2010 Altera Corporation
 

Software drivers abstract hardware details of the component so that software can 
access the component at a high level. The driver functions provide the software an 
API to access the hardware. The software requirements vary according to the needs of 
the component. The most common types of routines initialize the hardware, read 
data, and write data. 

When developing software drivers, you should review the software files provided for 
other ready-made components. The IP installer provides many components you can 
use as reference. You can also view the <Nios II EDS install path>/components/ 
directory for examples.

f For details about writing drivers for the Nios II hardware abstraction layer (HAL), 
refer to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the 
Nios II Software Developer’s Handbook. 

Verifying the Component
You can verify the component in incremental stages, as you complete more of the 
design. You should first verify the hardware logic as a unit (which might consist of 
multiple smaller stages of verification) and later verify the component in a system.

System Console
The system console is an interactive Tcl console available from within SOPC Builder 
that provides you with read and write access to the debugging capabilities that are 
available in your FPGA logic. You can use the system console to control and query the 
state of the Nios II processor, issue Avalon transactions, board bring-up, and access 
either JTAG UARTs or system level debug (SLD) nodes.

f For further details, refer to the System Console User Guide.

System-Level Verification
After you package a _hw.tcl file with the component editor, you can instantiate the 
component in a system and verify the functionality of the overall SOPC Builder 
system. 

SOPC Builder provides support for system-level verification for HDL simulators such 
as ModelSim®. SOPC Builder automatically produces a test bench for system-level 
verification.

1 You can include a Nios II processor in your system to enhance simulation capabilities 
during the verification phase. Even if your component has no relationship to the 
Nios II processor, the auto-generated ModelSim simulation environment provides an 
easy-to-use starting point.

Sharing Components
When you create a component, component editor saves the _hw.tcl file in the same 
directory as the top-level HDL file. Where appropriate, files referenced by the _hw.tcl 
file are specified relative to the _hw.tcl file itself, so the files can easily be moved and 
copied. To share a component, include it in your IP library. 

http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf


Chapter 10: SOPC Builder Component Development Walkthrough 10–7
System Information Files (.sopcinfo)

© July 2010 Altera Corporation Quartus II Handbook Version 10.0 Volume 4: SOPC Builder
 

For more information about including components in an IP library refer to Finding 
Components in SOPC Builder in Chapter 4: SOPC Builder Components in volume 4 of the 
Quartus II Handbook.

System Information Files (.sopcinfo)
Every time SOPC Builder generates a system, a <mysystem>.sopcinfo is also 
generated, which contains the following information:

■ SOPC Builder project, including:

■ Name and tool version

■ HDL language

■ Each module instantiated in the system, including:

■ Name and version

■ Where interface information was found on the disk, such as signal names and 
types, interface properties, and clock domain mapping

■ Parameter names and values

■ Each connection, including:

■ Component and interface connections

■ Base address, Avalon-MM interfaces, IRQ number interfaces

■ Memory map as seen by each master in the system

1 The .sopcinfo file is a report file only, and cannot be edited with SOPC Builder.

http://www.altera.com/literature/hb/qts/qts_qii54004.pdf


10–8 Chapter 10: SOPC Builder Component Development Walkthrough
Document Revision History

Quartus II Handbook Version 10.0 Volume 4: SOPC Builder © July 2010 Altera Corporation
 

Document Revision History
Table 10–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook 
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 10–1. Document Revision History

Date Version Changes Made

July 2010 10.0.0 No changes from previous release.

November 2009 9.1.0 ■ Added statement that SOPC Builder only supports the VHDL std_logic and 
std_logic_vector port types.

March 2009 9.0.0 Corrected direction of transform_data_available and transform_byte_lanes signals in 
Figure 10–1 on page 10–5. 

November 2008 8.1.0 ■ Added reference to new search path for IP chapter 4 of this volume.

■ Correction direction of signals in Figure 10–1.

■ Changed page size to 8.5 x 11 inches.

May 2008 8.0.0 ■ Chapter renumbered from 9 to 10.

■ Removed discussion of the Checksum Design example, which will now be in a 
readme.pdf file and zipped with the rest of the design files.

■ Deleted references to Avalon Memory-Mapped and Streaming Interface Specifications 
and changed to Avalon Interface Specifications.

■ New Figure 9-1 and Table 9-1.

■ New section on .sopcinfo file.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

	10. SOPC Builder Component Development Walkthrough
	SOPC Builder Components and the Component Editor
	Prerequisites
	Hardware and Software Requirements
	Component Development Flow
	Typical Design Steps
	Hardware Design

	Design Example: Checksum Hardware Accelerator
	Software Design
	Verifying the Component
	System Console
	System-Level Verification


	Sharing Components
	System Information Files (.sopcinfo)
	Document Revision History




